Water Circulation Driven by Cold Fronts in the Wax Lake Delta (Louisiana, USA)
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
3. Model Implementation
3.1. Setup
3.2. Validation: Skill Assessment
4. Results and Discussion
4.1. Cold Front Events
4.2. Water Flow and Transport
4.3. Water Level Amplitude Spectrum
4.4. Energy Distribution and Dominant Forcing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez-Partagas, J.; Mooers, C.N.K. A synoptic study of winter cold fronts in Florida. Mon. Weather. Rev. 1975, 103, 742–744. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Huang, W.; Wu, R.; Sheremet, A. Weather induced quasi-periodic motions in estuaries and bays: Meteorological tide. China Ocean. Eng. 2020, 34, 299–313. [Google Scholar] [CrossRef]
- Roberts, H.H.; Huh, O.K.; Hsu, S.A.; Rouse, L.J.; Rickman, D.A. Impact of cold-front passages on geomorphic evolution and sediment dynamics of the complex Louisiana coast. In Coastal Sediments ’87, Proceedings of the Specialty Conference on Advances in Understanding of Coastal Sediment Processes, New Orleans, LA, USA, 12–14 May 1987; American Society of Civil Engineers: Reston, VA, USA, 1987; pp. 1950–1963. [Google Scholar]
- Mossa, J.; Roberts, H.H. Synergism of riverine and winter storm-related sediment transport processes in Louisiana’s coastal wetlands. Trans. Gulf Coast Assoc. Geol. Soc. 1990, 40, 635–642. [Google Scholar]
- Lin, J.; Li, C.; Boswell, K.M.; Kimball, M.; Rozas, L. Examination of Winter Circulation in a Northern Gulf of Mexico Estuary. Estuaries Coasts 2016, 39, 1–21. [Google Scholar] [CrossRef]
- Huang, W.; Li, C. Cold front driven flows through multiple inlets of Lake Pontchartrain Estuary. J. Geophys. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Li, C. Spatial variation of cold front wind-driven circulation and quasi-steady state balance in Lake Pontchartrain Estuary. Estuar. Coast. Shelf Sci. 2019, 224, 154–170. [Google Scholar] [CrossRef]
- Li, C.; Huang, W.; Chen, C.; Lin, H. Flow regimes and adjustment to wind-driven motions in Lake Pontchartrain: A modeling experiment using FVCOM. J. Geophys. Res.—Ocean 2018. [Google Scholar] [CrossRef]
- Li, C.; Weeks, E.; Huang, W.; Milan, B.; Wu, R. Weather-Induced Transport through a Tidal Channel Calibrated by an Unmanned Boa. J. Atmos. Ocean. Technol. 2018, 35, 261–279. [Google Scholar] [CrossRef]
- Li, C.; Huang, W.; Milan, B. Atmospheric cold front induced exchange flows through a microtidal multi-inlet bay: Analysis using multiple horizontal ADCPs and FVCOM simulations. J. Atmos. Ocean. Technol. 2019, 36, 443–472. [Google Scholar] [CrossRef]
- Roberts, H.H.; Huh, O.K.; Hsu, S.A.; Rouse, L.J., Jr.; Rickman, D.A. Winter storm impact on the Chenier Plain Coast of Southwestern Louisiana. Gulf Coast Assoc. Geol. Soc. Trans. 1989, 39, 515–522. [Google Scholar]
- Pepper, D.A.; Stone, G.W. Hydrodynamics and sedimentary responses to two contrasting winter storms on the inner shelf of the northern Gulf of Mexico. Mar. Geol. 2004, 210, 43–62. [Google Scholar] [CrossRef]
- Feng, Z.; Li, C. Cold-front-induced flushing of the Louisiana Bays. J. Mar. Syst. 2010, 82, 252–264. [Google Scholar] [CrossRef]
- Wellner, R.; Beaubouef, R.; van Wagoner, J.; Roberts, H.H.; Sun, T. Jet-plume depositional bodies: The primary building blocks of Wax Lake Delta. Trans. Gulf Coast Assoc. Geol. Soc. 2005, 55, 867–909. [Google Scholar]
- Falcini, F.; Jerolmack, D.J. A potential vorticity theory for the formation of elongate channels in river deltas and lakes. J. Geophys. Res. 2010, 115, F04038. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, D.A.; Paola, C.; Hoyal, D.C.J.D.; Sheets, B.A. Quantitative metrics that describe river deltas and their channel networks. J. Geophys. Res. 2011, 116, F04022. [Google Scholar] [CrossRef]
- Schlemon, R.J. Subaqueous delta formation-Atchafalaya Bay, Louisiana. In Deltas: Models for Exploration; Broussard, M.L., Ed.; Houston Geological Society: Houston, TX, USA, 1975; pp. 209–221. [Google Scholar]
- Roberts, H.H.; Walker, N.; Cunningham, R.; Kemp, G.P.; Majersky, S. Evolution of sedimentary architecture and surface morphology: Atchafalaya and Wax Lake deltas, Louisiana. Trans. Gulf Coast Assoc. Geol. Soc. 1997, 47, 477–484. [Google Scholar]
- Roberts, H.H.; Coleman, J.M.; Bentley, S.J.; Walker, N. An embryonic major delta lobe: A new generation of delta studies in the Atchafalaya-Wax Lake delta systems. GCAGS/GCSSEPM Trans. 2003, 53, 690–703. [Google Scholar]
- Edmonds, D.; Slingerland, R. Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks. J. Geophys. Res. 2007, 112, F02034. [Google Scholar] [CrossRef] [Green Version]
- Meselhe, E.; Sadid, K.; Khadka, A. Sediment Distribution, Retention and Morphodynamic Analysis of a River-Dominated Deltaic System. Water 2021, 13, 1341. [Google Scholar] [CrossRef]
- Rivera-Monroy, V.H.; Elliton, C.; Narra, S.; Meselhe, E.; Zhao, X.; White, E.; Sasser, C.E.; Visser, J.M.; Meng, X.; Wang, H.; et al. Wetland Biomass and Productivity in Coastal Louisiana: Base Line Data (1976–2015) and Knowledge Gaps for the Development of Spatially Rehabilitation Initiatives. Water 2019, 11, 2054. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Lopez, I.A.; Rivera-Monroy, V.H.; Day, J.W.; Whitbeck, J.; Maiti, K.; Madden, C.J.; Trasviña-Castro, A. Assessing Chlorophyll a Spatiotemporal Patterns Combining In Situ Continuous Fluorometry Measurements and Landsat 8/OLI Data Across the Barataria Basin (Louisiana, USA). Water 2021, 13, 512. [Google Scholar] [CrossRef]
- Elliton, C.; Xu, K.; Rivera-Monroy, V.H. The Impact of Biophysical Processes on Sediment Transport in the Wax Lake Delta (Louisiana, USA). Water 2020, 12, 2072. [Google Scholar] [CrossRef]
- Roberts, H.H.; Beaubouef, R.T.; Walker, N.D.; Stone, G.W.; Bentley, S.; Shermet, A.; van Heerden, I.I. San-rich bayhead deltas in Atchafalaya Bay (Louisiana): Winnowing by cold front forcing. In Proceedings of the Coastal Sediments’ 03, Clearwater, FL, USA, 18–23 May 2003; pp. 1–15. [Google Scholar]
- Shaw, J.B.; Mohrig, D.; Whitman, S.K. The Morphology and Evolution of Channels on the Wax Lake Delta. J. Geophys. Res. 2013, 118, 1–22. [Google Scholar] [CrossRef]
- Shaw, J.B.; Mohrig, D.; Wagner, R.W. Flow patterns and morphology of a prograding river delta. J. Geophys. Res. Earth Surf. 2016, 2015JF003570. [Google Scholar] [CrossRef]
- Kim, W.; Mohrig, D.; Twilley, R.; Paola, C.; Parker, G. Is it feasible to build new land in the Mississippi River delta? EOS Trans. Am. Geophys. Union 2009, 90, 373–374. [Google Scholar] [CrossRef]
- Carle, M.V.; Sasser, C.E. Productivity and resilience: Long-term trends and storm-driven fluctuations in the plant community of the accreting Wax Lake Delta. Estuaries Coasts 2016, 39, 406–422. [Google Scholar] [CrossRef]
- Li, C.; Weeks, E.; Rego, J.L. In situ measurements of saltwater flux through tidal passes of Lake Pontchartrain estuary by Hurricanes Gustav and Ike in September 2008. Geophys. Res. Lett. 2009, 36, L19609. [Google Scholar] [CrossRef]
- Hiatt, M.; Passalacqua, P. Hydrological connectivity in river deltas: The first-order importance of channel-island exchange. Water Resour. Res. 2015, 51, 2264–2282. [Google Scholar] [CrossRef] [Green Version]
- Hiatt, M.; Castañeda-Moya, E.; Twilley, R.; Hodges, B.R.; Passalacqua, P. Channel-island connectivity affects exposure time distributions in a coastal river delta. Water Resour. Res. 2018, 54. [Google Scholar] [CrossRef]
- Hiatt, M.; Passalacqua, P. What controls the transition from confined to unconfined flow? Analysis of hydraulics in a coastal river delta. J. Hydraul. Eng. 2017, 143. [Google Scholar] [CrossRef]
- Hiatt, M. A Network-Based Analysis of River Delta Surface Hydrology: An Example from Wax Lake Delta. Master’s Dissertation, University of Texas at Austin, Austin, TX, USA, 2013. [Google Scholar]
- Musner, T.; Bottacin-Busolin, A.; Zaramella, M.; Marion, A. A contaminant transport model for wetlands accounting for distinct residence time bimodality. J. Hydrol. 2014, 515, 237–246. [Google Scholar] [CrossRef]
- Christensen, A.; Twilley, R.R.; Willson, C.S.; Castañeda-Moya, E. Simulating hydrological connectivity and water age within a coastal deltaic floodplain of the Mississippi River Delta. Estuar. Coast. Shelf Sci. 2020, 245, 106995. [Google Scholar] [CrossRef]
- Sendrowski, A.; Castañeda-Moya, E.; Twilley, R.; Passalacqua, P. Biogeochemical and Hydrological Variables Synergistically Influence Nitrate Variability in Coastal Deltaic Wetlands. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005737. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Li, X. Remote Sensing Studies of Suspended Sediment Concentration Variations in a Coastal Bay During the Passages of Atmospheric Cold Fronts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2608–2622. [Google Scholar] [CrossRef]
- Hiatt, M.; Snedden, G.; Day, J.W.; Rohli, R.; Nyman, J.A.; Lane, R.; Sharp, L.A. Drivers and impacts of water level fluctuations in the Mississippi River delta: Implications for delta restoration. Estuar. Coast. Shelf Sci. 2019. [Google Scholar] [CrossRef]
- Knights, D.; Sawyer, A.H.; Barnes, R.T.; Piliouras, A.; Schwenk, J.; Edmonds, D.A.; Brown, A.M. Nitrate Removal Across Ecogeomorphic Zones in Wax Lake Delta, Louisiana (USA). Water Resour. Res. 2020, 56, e2019WR026867. [Google Scholar] [CrossRef]
- Walker, N.D.; Hammack, A.B. Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermilion Bay Region, Louisiana. J. Coast. Res. 2000, 16, 996–1010. [Google Scholar]
- Walker, N.D. Wind and Eddy Related Circulation on the Louisiana/Texas Shelf and Slope Determined from Satellite and In-Situ Measurements: October 1993–August 1994; College of the Coast & Environment: Baton Rouge, LA, USA, 2002. [Google Scholar]
- Roberts, H.H.; Walker, N.; Sheremet, A.; Stone, G.W. Effects of Cold Fronts on Bayhead Delta Development: Atchafalaya Bay, Louisiana, USA, High Resolution Morphodynamics and Sedimentary Evolution of Estuaries, Coastal Systems and Continental Margins; Springer: Dordrecht, The Netherlands, 2005; Volume 8, pp. 269–298. [Google Scholar]
- Blumberg, A.F. A Primer for ECOM-si; Technical Report; HydroQual, Inc.: Mahwah, NJ, USA, 1994; p. 66. [Google Scholar]
- Zhang, Q. Numerical Simulation of Cold Front Related Hydrodynamics of Wax Lake Delta. Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, USA, 2015; p. 210. [Google Scholar]
- Chen, C.; Zhu, J.; Ralph, E.; Green, S.A.; Budd, J.W.; Zhang, F.Y. Prognostic modeling studies of the Keweenaw Current in Lake Superior, part I: Formation and evolution. J. Phys. Oceanogr. 2001, 31, 379–395. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, J.; Zheng, L.; Ralph, E.; Budd, J.W. A Non-orthogonal Primitive Equation Coastal Ocean Circulation Model: Application to Lake Superior. J. Great Lakes Res. 2004, 30 (Suppl. 1), 41–54. [Google Scholar] [CrossRef]
- Blumberg, A.F.; Mellor, G.L. A Description of a Three-Dimensional Coastal Ocean Circulation Model. In Three-Dimensional Coastal Ocean Models; Heaps, N.S., Ed.; American Geophysical Union: Washington, DC, USA, 1987; Volume 4, pp. 1–16. [Google Scholar]
- Zheng, L.; Chenb, C.; Zhang, F.Y. Development of water quality model in the Satilla River Estuary, Georgia. Ecol. Model. 2004, 178, 457–482. [Google Scholar] [CrossRef]
- Chen, C.; Huang, H.; Beardsley, R.C.; Liu, H.; Xu, Q.; Cowles, G. A finite volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models. J. Geophys. Res. 2007, 112, C03018. [Google Scholar] [CrossRef]
- Lyu, H.; Zhu, J. Impact of the bottom drag coefficient on saltwater intrusion in the extremely shallow estuary. J. Hydrol. 2018, 557, 838–850. [Google Scholar] [CrossRef]
- Tian, R.; Chen, C. Influence of model geometrical fitting and turbulence parameterization on phytoplankton simulation in the Gulf of Maine. Deep-Sea Res. II 2006, 53, 2808–2832. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problem. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Galperin, B.; Kantha, L.H.; Hassid, S.; Rosati, A. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 1988, 45, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Cobb, M.; Keen, T.R.; Walker, N.D. Modeling the circulation of the Atchafalaya Bay system during winter cold front events. Part 1: Model description and validation. J. Coast. Res. 2008, 24, 1036–1047. [Google Scholar] [CrossRef]
- Cobb, M.; Keen, T.R.; Walker, N.D. Modeling the circulation of the Atchafalaya Bay system, part 2: River plume dynamics during cold fronts. J. Coast. Res. 2008, 24, 1048–1062. [Google Scholar] [CrossRef]
- Mukai, A.Y.; Westerink, J.J.; Luettich, R.A. Guidelines for Using Eastcoast 2001 Database of Tidal Constituents within Western North Atlantic Ocean, Gulf of Mexico and Caribbean, Coastal and Hydraulics Engineering; Technical Note CHETN-IV-40; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2001. [Google Scholar]
- Westerink, J.J. Tidal Prediction in the Gulf of Mexico/Galveston Bay Using Model ADCIRC-2DDI; Contractors Report; US Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1993. [Google Scholar]
- Westerink, J.J.; Blain, C.A.; Luettich, R.A., Jr.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves Coasts and Estuaries, Report 2: Users Manual for ADCIRC-2DDI; Dredging Research Program Technical Report DRP-92-6; U.S. Army Engineers Waterways Experiment Station: Vicksburg, MS, USA, 1994; 156p. [Google Scholar]
- Westerink, J.J.; Luettich, R.A., Jr.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves Coasts and Estuaries, Report 3: Development of a Tidal Constituent Data Base for the Western North Atlantic and Gulf of Mexico, Dredging Research Program; Technical Report DRP-92-6; U.S. Army Engineers Waterways Experiment Station: Vicksburg, MS, USA, 1993; 154p. [Google Scholar]
- Mukai, A.Y.; Westerink, J.J.; Luettich, R.A., Jr. Guidelines for Using the Eastcoast, 2001, Database of Tidal Constituents within the Western North Atlantic Ocean, Gulf of Mexico and Caribbean Sea; Technical Note (IV–XX); U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory: Vicksburg, MS, USA, 2002; 24p. [Google Scholar]
- Mukai, A.Y.; Westerink, J.J.; Luettich, R.A., Jr.; Mark, D. Eastcoast, 2001, a Tidal Constituent Database for the Western North Atlantic, Gulf of Mexico and Caribbean Sea; Technical Report, ERDC/CHL TR-02-24; U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory: Vicksburg, MS, USA, 2002; 201p. [Google Scholar]
- Kamphuis, J.W. Introduction to Coastal Engineering and Management; World Scientific: Singapore, 2000. [Google Scholar]
- Allen, J.I.; Somerfield, P.J.; Gilbert, F.J. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J. Mar. Syst. 2007, 64, 3–14. [Google Scholar] [CrossRef]
- Liu, Y.; MacCready, P.; Hickey, B.M.; Dever, E.P.; Kosro, P.M.; Banas, N.S. Evaluation of a coastal ocean circulation model for the Columbia River plume in summer 2004. J. Geophys. Res. 2009, 114, C00B04. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.H. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather. Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Ralston, D.K.; Geyer, W.R.; Lerczak, J.A. Structure, variability, and salt flux in a strongly forced salt wedge estuary. J. Geophys. Res. 2010, 115, C06005. [Google Scholar] [CrossRef] [Green Version]
- DiMarco, S.F.; Reid, R.O. Characterization of the principal tidal current constituents on the Texas-Louisiana shelf. J. Geophys. Res. 1998, C103, 3093–3109. [Google Scholar] [CrossRef]
- Li, C.; Roberts, H.H.; Stone, G.W. Wind surge and saltwater intrusion and Atchafalaya Bay during onshore winds prior to cold front passage. Hydrobiologia 2011, 658, 27–39. [Google Scholar] [CrossRef]
- Upreti, L.; Rivera-Monroy, V.H.; Maiti, K.; Giblin, A.; Geaghan, J.P. Emerging wetlands from river diversions can sustain high denitrification rates in a coastal delta. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006217. [Google Scholar] [CrossRef]
- Buttles, J.; Mohrig, D.; Nittrouer, J.; McElroy, B.; Baitis, E.; Allison, M.; Paola, C.; Parker, G.; Kim, W. Partitioning of water discharge by distributary channels in the prograding, Wax Lake Delta, coastal Louisiana, USA. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2007. [Google Scholar]
- Carle, M. Spatial Structure and Dynamics of the Plant Communities in a Pro-Grading River Delta: Wax Lake Delta, Atchafalaya Bay, Louisiana. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2013; 73p. Available online: https://digitalcommons.lsu.edu/gradschool_dissertations/73 (accessed on 7 March 2022).
- Geleynse, N.; Hiatt, M.; Sangireddy, H.; Passalacqua, P. Identifyingenvironmental controls on the shore-line of a natural river delta. J. Geo-Phys. Res. Earth Surf. 2015, 120, 877–893. [Google Scholar] [CrossRef]
- Kantha, L. Barotropic tides in the Gulf of Mexico. Circulation in the Gulf of Mexico: Observations and Models. Geophys. Monogr. Amer. Geophys. Union 2005, 161, 159–163. [Google Scholar] [CrossRef]
- Van Heerden, I.L.I. Deltaic Sedimentation in Eastern Atchafalaya Bay, Louisiana. Ph.D. Dissertation, Department of Marine Sciences, Louisiana State University, Baton Rouge, LA, USA, 1983; p. 151. [Google Scholar]
- Kolker, A.S.; Allison, M.A.; Hameed, S. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Törnqvist, T.E.; Jankowski, K.L.; Li, Y.-X.; González, J.L. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. Sci. Adv. 2020, 6, eaaz5512. [Google Scholar] [CrossRef]
Station | Location | Data | |||||
---|---|---|---|---|---|---|---|
Latitude | Longitude | Wind | Barometric Pressure | Air Temperature | Water Level | Current | |
Delta #1 | 29.506357° | −91.472336° | * | * | * | ||
Big Hogs Bayou | 29.518045° | −91.354841° | * | * | * | ||
Small Tripod | 29.501126° | −91.477912° | * | ||||
Large Tripod | 29.517809° | −91.354793° | * | ||||
CSI3 | 29.441° | −92.061° | * | * | * | * | * |
CSI6 | 28.867° | −90.483° | * | * | * | * | * |
CSI9 | 29.1015° | −89.9782° | * | * | * | * | |
LAWMA | 29.448333° | −91.336667° | * | * | * | * | |
BE | 29.666667° | −91.236667° | * | * | * | * | |
FRWL | 29.555° | −92.305° | * | * | * | * | |
GI | 29.263333° | −89.956667° | * | * | * | * | |
PS | 29.178333° | −89.258333° | * | * | * | * | |
PI | 28.931667° | −89.406667° | * | * | * | * | |
Port Fourchon | 29.113333° | −90.198333° | * | ||||
WL | 29.697778° | −91.372778° | * | ||||
LAR | 29.692611° | −91.211833° | * |
Station Number | SS Value |
---|---|
DL | 0.5111 |
Big Hogs Bayou | 0.6506 |
Small Tripod | 0.6602 |
Large Tripod | 0.7110 |
CSI3 | 0.7878 |
CSI6 | 0.7996 |
CSI9 | 0.7938 |
LAW | 0.5603 |
BE | 0.5227 |
FRWL1 | 0.5210 |
GI | 0.5900 |
PS | 0.7135 |
PI | 0.5181 |
PORT FOURCHON | 0.6175 |
WL | 0.4549 |
LAR | 0.6019 |
Station Number | SS Value | ||
---|---|---|---|
Near-Surface Layer | Mid-Layer | Near-Bottom Layer | |
Delta #1 | 0.6819 | * | * |
Big Hogs Bayou | 0.6418 | * | * |
CSI3 | 0.4155 | 0.6076 | 0.6015 |
CSI6 | 0.4032 | 0.4141 | 0.6012 |
Number | Time of Cold Front Passage (UTC) | |
---|---|---|
FRWL1 Observation | Weather Maps (Figures Not Shown) | |
1 | 17 December 2012, 17:48:00 | 17 December 2012, 21 UTC |
2 | 20 December 2012, 11:24:00 | 20 December 2012, 12 UTC |
3 | 26 December 2012, 01:30:00 | 26 December 2012, 00 UTC |
4 | 28 December 2012, 21:42:00 | 28 December 2012, 21 UTC |
5 | 1 January 2013, 18:48:00 | 1 January 2013, 21 UTC |
6 | 10 January 2013, 11:18:00 | 11 January 2013, 06 UTC |
Cold Front Event | Type | Wax Lake Delta | |
---|---|---|---|
Duration (h) | Percentage (%) | ||
1 | MC | 41.5 | 32.66 |
2 | MC | 69 | 68.61 |
3 | MC | 44.5 | 76.64 |
4 | MC | 65 | 55.18 |
5 | MC | 65 | 55.18 |
6 | MC | 185 | 39.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, C.; Huang, W.; Lin, J.; Hiatt, M.; Rivera-Monroy, V.H. Water Circulation Driven by Cold Fronts in the Wax Lake Delta (Louisiana, USA). J. Mar. Sci. Eng. 2022, 10, 415. https://doi.org/10.3390/jmse10030415
Zhang Q, Li C, Huang W, Lin J, Hiatt M, Rivera-Monroy VH. Water Circulation Driven by Cold Fronts in the Wax Lake Delta (Louisiana, USA). Journal of Marine Science and Engineering. 2022; 10(3):415. https://doi.org/10.3390/jmse10030415
Chicago/Turabian StyleZhang, Qian, Chunyan Li, Wei Huang, Jun Lin, Matthew Hiatt, and Victor H. Rivera-Monroy. 2022. "Water Circulation Driven by Cold Fronts in the Wax Lake Delta (Louisiana, USA)" Journal of Marine Science and Engineering 10, no. 3: 415. https://doi.org/10.3390/jmse10030415
APA StyleZhang, Q., Li, C., Huang, W., Lin, J., Hiatt, M., & Rivera-Monroy, V. H. (2022). Water Circulation Driven by Cold Fronts in the Wax Lake Delta (Louisiana, USA). Journal of Marine Science and Engineering, 10(3), 415. https://doi.org/10.3390/jmse10030415