Lightweight Structural Concepts in Bearing Quasi-Static Ice Hull Interaction Loads
Abstract
:1. Introduction
2. Proposed Hull Concepts and Candidates
2.1. Ice–Hull Interaction Scenarios
2.2. Proposed Concept for Hull Panel
2.3. Structural Concepts
2.4. Geometric Parametrization
Material | Density (kg/m3) | Young’s Modulus (MPa) | Shear Modulus (MPa) | Tensile/Shear Yield Strength (MPa) | Tensile Ultimate Strength (MPa) | Orthotropic Strain Limit |
---|---|---|---|---|---|---|
Structural Steel [33,34] | 7850 | 2e5 | 7.69e4 | 250 | 460 | |
Aluminum alloy [35] | 2770 | 7.1e4 | 2.67e4 | 280 | 310 | |
Carbon fibre 230 [33] | 1490 | X: 1.21e5 Y, Z: 8600 | XY, XZ: 4700 YZ: 3100 | X: 2231 Y, Z: 29 | Y, Z: 0.0032 X: 0.0167 | |
Carbon fibre 395 [33] | 1540 | X: 2.09e5 Y, Z: 9450 | XY, XZ: 5500 YZ: 3900 | X: 1979 Y, Z: 26 | Y, Z: 0.0031 X: 0.0092 | |
E-glass [33] | 2000 | X: 4.5e4 Y, Z: 1e4 | XY, XZ: 5000 YZ: 3846.2 | X: 1100 Y, Z: 35 | Y, Z: 0.0035 X: 0.0244 | |
PVC60 [33] | 60 | 70 | 26.9 | 1.5 (tensile) −1.5 (compressive) 0.93 (shear) | ||
PVC200 [36] | 200 | 175 | 75 | 6 (tensile) −5.2 (compressive) 3.5 (shear) | ||
PET GR200 [37] | 200 | 235 | 51 | 3.9 (tensile) −4 (compressive) 1.75 (shear) | ||
PET GR320 [37] | 320 | 350 | 90 | 4.8 (tensile) −7 (compressive) 2.1 (shear) |
3. Structural Model
Ice Pressure, Loading Area and Representative Hull Panel
4. Finite Element Model
4.1. Meshing and Elements
4.2. Boundary Conditions
4.3. Model Validation
5. Damage Characterization
Hashin Criteria
6. Results
6.1. Overall Comparison of Structural Concepts
6.1.1. Strength
6.1.2. Stiffness
6.1.3. Comparison of Best Variants
6.2. Identification of Significant Parameters
6.2.1. Metal Grillage
6.2.2. Simple Sandwich
6.2.3. Stiffened Sandwich
6.3. Influence of Parametric Interactions
6.4. Parametric Trends of Significant Parameters and Interactions
6.4.1. Parametric Trends
6.4.2. Interactions
7. Discussion
- The pressure patch in this case is idealized as a rectangle with dimensions chosen as per rules and there can be differences due to this [46].
- The division of the ice–hull interaction into three independent processes is an idealization. In real life, the phases may overlap resulting in the non-realization of the quasi-static assumption.
- The geometry of the stiffeners on the stiffened sandwich structure is chosen to mimic the metal grillage stiffeners. The concept is based on theoretical investigations by Goel, Matsagar [18]. However, such a geometric arrangement’s practical implementation needs to be investigated as such stiffeners are not usually found in practice in marine vessels. Recent advances in additive manufacturing for composites could be the way [47].
8. Conclusions
- The stiffened sandwich was identified as the most suitable concept because it offers a combination of high gross tonnage and a light weight. Considering only weight as a metric, sandwich structures were the lightest alternative within thickness limits.
- For the metal grillage, plate thickness, material, stiffener and stringer section modulus and location of stringer are identified as statistically significant parameters. For the sandwich structure, significant parameters are face thickness, core thickness and face material. For the stiffened sandwich, face thickness, core thickness, face and core materials, stiffener section modulus and stiffener spacing are significant.
- For the metal grillage, a stringer’s presence in the ice belt region was identified as a critical factor.
- We observe no statistical significance in stiffeners’ location with respect to the pressure patch.
- Both carbon fibre and E-glass exhibited viable alternatives for the stiffened sandwich whereas only carbon fibre alternatives were suitable for sandwich structures within the thickness limits.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finnish Swedish Ice Class Rules (FSICR); Contract No.: TRAFI/708629/03.04.01.01/2018; Finnish Transport and Communication Agency (Traficom): Helsinki, Finland, 2017.
- DNV GL. Rules for Classification—Ships; Part 6 Additional Class Notations; Chapter 6 Cold Climate; DNV GL: Bærum, Norway, 2015. [Google Scholar]
- IACS. UR I2 Structural Requirements for Polar Class Ships 2019; Contract No.: UR I2 Rev4 CLN; IACS: Hamburg, Germany, 2019. [Google Scholar]
- Pavic, M.; Daley, C.; Hussein, A.; Hermanski, G. Ship Frame Research Program-A Numerical Study of the Capacity of Single Frames Subject to Ice Load; OERC Report; Institute for Ocean Technology NRC: St. John’s, NL, Canada, 2004; Volume 2. [Google Scholar]
- Daley, C.; Hermanski, G. Ship Frame Research Program—An Experimental Study of Ship Frames and Grillages Subjected to Patch Loads, Volume 1-Data Report; SSC Project SR. 2008:2008-001; Ship Structure Committee: Washington, DC, USA, 2008. [Google Scholar]
- Cheemakurthy, H.; Zhang, M.; Garme, K.; Barsoum, Z. (Eds.) Nonlinear Finite Element Analysis of Inland-Waterway Barge in Fresh Water Ice Conditions. In Proceedings of the 29th International Ocean and Polar Engineering Conference, Honolulu, HI, USA, 16–21 June 2019; OnePetro: Richardson, TX, USA, 2019. [Google Scholar]
- Abraham, J. Plastic Response of Ship Structure Subject to Ice Loading. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2008. [Google Scholar]
- Avellan, T. Weight Estimation of Ice Strengthened Hull Structures. Master’s Thesis, Aalto University, Espoo, Finland, 2020. [Google Scholar]
- Kujala, P.; Goerlandt, F.; Way, B.; Smith, D.; Yang, M.; Khan, F.; Veitch, B. Review of risk-based design for ice-class ships. Mar. Struct. 2019, 63, 181–195. [Google Scholar] [CrossRef]
- Crum, K.A.; McMichael, J.; Novak, M. (Eds.) Advances in Aluminum Relative to Ship Survivability. In Proceedings of the American Society of Naval Engineers Day 2012 Conference, Arlington, VA, USA, 9–10 February 2012; Citeseer: Princeton, NJ, USA, 2012. [Google Scholar]
- Herrnring, H.; Kubiczek, J.M.; Ehlers, S.; Niclasen, N.O.; Burmann, M. Experimental investigation of an accidental ice impact on an aluminium high speed craft. In Progress in the Analysis and Design of Marine Structures; CRC Press: Boca Raton, FL, USA, 2017; pp. 697–704. [Google Scholar]
- Kujala, P.; Klanac, A. Steel sandwich panels in marine applications. Brodogr. Teor. Praksa Brodogr. Pomor. Teh. 2005, 56, 305–314. [Google Scholar]
- Mouritz, A.P.; Gellert, E.; Burchill, P.; Challis, K. Review of advanced composite structures for naval ships and submarines. Compos. Struct. 2001, 53, 21–42. [Google Scholar] [CrossRef]
- Lin, C.-C.; Lin, C.-M.; Huang, C.-C.; Lou, C.-W.; Meng, H.-H.; Hsu, C.-H.; Lin, J.H. Elucidating the design and impact properties of composite nonwoven fabrics with various filaments in bulletproof vest cushion layer. Text. Res. J. 2009, 79, 268–274. [Google Scholar] [CrossRef]
- Zenkert, D.; Shipsha, A.; Persson, K. Static indentation and unloading response of sandwich beams. Compos. Part B 2004, 35, 511–522. [Google Scholar] [CrossRef]
- Kortenoeven, J.; Boon, B.; de Bruijn, A. Application of sandwich panels in design and building of dredging ships. J. Ship. Prod. Des. 2008, 24, 125–134. [Google Scholar] [CrossRef]
- Sujiatanti, S.; Zubaydi, A.; Budipriyanto, A. (Eds.) Finite element analysis of ship deck sandwich panel. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2018; Volume 874, pp. 134–139. [Google Scholar] [CrossRef]
- Goel, M.D.; Matsagar, V.A.; Marburg, S.; Gupta, A.K. Comparative performance of stiffened sandwich foam panels under impulsive loading. J. Perform. Constr. Facil. 2013, 27, 540–549. [Google Scholar] [CrossRef]
- Riska, K.; Bridges, R. Limit state design and methodologies in ice class rules for ships and standards for Arctic offshore structures. Mar. Struct. 2019, 63, 462–479. [Google Scholar] [CrossRef]
- Daley, C.; Hermanski, G. Ship Frame/Grillage Research Program-Investigation of Finite Element Analysis Boundary Conditions; Memorial University OERC Report; National Research Council: Ottawa, ON, Canada, 2005; Volume 2. [Google Scholar]
- Zhu, S.; Chai, G.B. Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact. Compos. Struct. 2013, 101, 204–214. [Google Scholar] [CrossRef]
- Daley, C.; Riska, K. Review of Ship-Ice Interaction Mechanics; Report from Finnish-Canadian Joint Research Project no. 5,’Ship Interaction with Actual Ice Conditions’; Interim Report on Task 1a; Helsinki University of Technology: Helsinki, Finland, 1990. [Google Scholar]
- Trends in the Ice Physical Properties in Lake Mälaren, Sweden. 2018. Available online: https://www.smhi.se/en/services/professional-services/scandinavian-waters/swedish-ice-service-1.8715 (accessed on 10 January 2018).
- Valanto, P. The resistance of ships in level ice. SNAME Trans. 2001, 109, 53–83. [Google Scholar]
- Enkvist, E.; Varsta, P.; Riska, K. (Eds.) The ship-ice interaction. In Proceedings of the POAC 79, 5th International Conference on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway, 13–18 August 1979. [Google Scholar]
- Jordaan, I.J. Mechanics of ice–structure interaction. Eng. Fract. Mech. 2001, 68, 1923–1960. [Google Scholar] [CrossRef]
- Rinsberg, J.W.; Andrić, J.; Heggelund, S.E.; Homma, N.; Huang, Y.T.; Jang, B.S.; Jelovica, J.; Kawamura, Y.; Lara, P.; Sidari, M. (Eds.) Quasi-static response. In Proceedings of the 20th International Ship and Offshore Structures Congress (ISSC 2018) Volume 3: Discussions; IOS Press: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wang, B.; Yu, H.-C.; Basu, R. (Eds.) Ship and ice collision modeling and strength evaluation of LNG ship structure. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 15–20 June 2008; American Society of Mechanical Engineers (ASME): New York, NY, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Cheemakurthy, H.; Zhang, M.; Garme, K.; Burman, M.; Ehlers, S.; von Bock und Polach, R.U. Statistical estimation of uncertainties associated with ship operations in fresh water ice. In Proceedings of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, 10–15 June 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- DNV GL. Rules for Classification: Inland Navigation Vessels (RU-INV); DNV GL: Bærum, Norway, 2017. [Google Scholar]
- Ghiasi, H.; Pasini, D.; Lessard, L. Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Compos. Struct. 2009, 90, 1–11. [Google Scholar] [CrossRef]
- DNV GL. Rules for Classification of High Speed, Light Craft and Naval Surface Craft; Det Norske Veritas: Bærum, Norway, 2015. [Google Scholar]
- Ansys. Material Database: Ansys Granta EduPack Software; ANSYS, Inc.: Cambridge, UK, 2021. [Google Scholar]
- ASME. ASME BPV Code, Section 8, Div 2, Table 5-110.1; American Society of Mechanical Engineers (ASME): New York, NY, USA, 1998. [Google Scholar]
- Amancio-Filho, S.T.; Camillo, A.P.; Bergmann, L.; Dos Santos, J.F.; Kury, S.E.; Machado, N.G. MIL Military Handbook: MIL-HDBK-5H-Metallic Materials and Elements for Aerospace Vehicle Structures MIL Military Handbook: MIL-HDBK-5H-Metallic Materials and Elements for Aerospace Vehicle Structures, 8-11, 1998. Mater. Trans. 2011, 52, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Topolo. Parameters of T-C Series Thermo Panel PVC Foam Core. Available online: http://www.topolocfrt.com/thermo-panel-pvc-foam-core/ (accessed on 19 February 2022).
- Armacell. Technical Data: ArmaPET Struct GR. 2021; Report No.: 00481|Arma PET Struct I ArmaPET I C_TDS I 082021 I Global I EN Master; Armacell: Luxembourg, 2021. [Google Scholar]
- DNV GL. Rules for Classification—Ships. Part 3 Hull. Chapter 4 Loads; DNV GL: Bærum, Norway, 2017. [Google Scholar]
- SMHI. Statistics on Freshwater Ice in Sweden; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2021. [Google Scholar]
- Zhang, M.; Cheemakurthy, H.; Ehlers, S.; Franz von Bock und Polach, R.U.; Garme, K.; Burman, M. Ice pressure prediction based on the probabilistic method for ice-going vessels in inland waterways. J. Offshore Mech. Arct. Eng. 2019, 141, 021501. [Google Scholar] [CrossRef]
- Feng, G.-Q.; Li, G.; Liu, Z.-H.; Niu, H.-L.; Li, C.-F. Numerically simulating the sandwich plate system structures. J. Mar. Sci. Appl. 2010, 9, 286–291. [Google Scholar] [CrossRef]
- Yang, B.; Wang, D. Buckling strength of rectangular plates with elastically restrained edges subjected to in-plane impact loading. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2017, 231, 3743–3752. [Google Scholar] [CrossRef]
- Hashin, Z. Failure criteria for unidirectional fibre composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Taguchi, G.; Elsayed, E.A.; Hsiang, T.C. Quality Engineering in Production Systems; McGraw-Hill College: New York, NY, USA, 1989. [Google Scholar]
- Bergman, B. Industriell Försöksplanering Och Robust Konstruktion; Studentlitteratur: Lund, Sweden, 1992. [Google Scholar]
- Kubiczek, J.M.; Andresen-Paulsen, G.; Herrnring, H.; von Bock Und Polach, F.; Ehlers, S. Development of a design load patch for the consideration of ice loads. Ships Offshore Struct. 2020, 15, S20–S28. [Google Scholar] [CrossRef]
- Parandoush, P.; Lin, D. A review on additive manufacturing of polymer-fibre composites. Compos. Struct. 2017, 182, 36–53. [Google Scholar] [CrossRef]
- Cheemakurthy, H.; Tanko, M.; Garme, K. Urban Waterborne Public Transport Systems: An Overview of Existing Operations in World Cities; Contract No.: 1651-7660; TRITA-AVE 2017:92.; KTH Royal Institute of Technology: Stockholm, Sweden, 2018; ISBN 978-91-7729-648-5. [Google Scholar]
- Tanko, M.; Cheemakurthy, H.; Kihl, S.H.; Garme, K. Water transit passenger perceptions and planning factors: A Swedish perspective. Travel Behav. Soc. 2019, 16, 23–30. [Google Scholar] [CrossRef]
- Cheemakurthy, H.; Garme, K. Fuzzy AHP based design performance index for evaluation of ferries. Sustainability 2022, 14, 3680. [Google Scholar] [CrossRef]
- Cheemakurthy, H.; Garme, K. A modularly tailored commuter ferry platform. Int. Shipbuild. Prog. 2022. accepted for publication. [Google Scholar]
Structural Concept | Material | |||
---|---|---|---|---|
Metal grillage | Structural Steel Aluminium alloy | |||
Sandwich | Face: | Carbon fibre epoxy 230 GPa UD Carbon fibre epoxy 395 GPa UD, woven Glass fibre epoxy | Core: | PVC 60, 200 PET 200, 320 |
Stiffened sandwich | Face and stiffeners: | Carbon fibre epoxy 230 GPa UD Carbon fibre epoxy 395 Gpa UD, woven Glass fibre epoxy | Core: | PVC 60, 200 PET 200, 320 |
Structural Concept | Structural Element | Variants |
---|---|---|
Metal Grillage (486 cases) | Plate thickness | 10, 15, 20 mm |
Stiffener spacing | 0.25, 0.5, 0.67 m (0.67 m: no ice stiffener) | |
Stringer spacing | 0.5, 0.67, 1 m (0.67 m: no ice stringer) | |
Stiffener elastic section modulus | 18.4, 57.3, 94.8 cm3 | |
Stringer elastic section modulus | 150, 303, 443 cm3 | |
Materials | Steel, Aluminum | |
Sandwich Structure (405 cases) | Face single ply thickness | 0.2, 0.3, 0.4 mm |
Thin core thickness | 75, 175, 275 mm | |
Thick Core thickness | 300, 450, 600 mm | |
Face ply angles | ||
Face materials | Carbon fibre 235, Carbon fibre 395, E-glass | |
Core materials | PVC 60/200, PET 200/320 | |
Stiffened Sandwich Structure (1215 cases) | Face single ply thickness | 0.2, 0.3, 0.4 mm |
Thick Core thickness | 150, 275, 400 mm | |
Thin Core thickness | 60, 100, 140 mm | |
Face ply angles | ||
Plate and stiffener face materials | Carbon fibre 235, Carbon fibre 395, E-glass | |
Plate core materials | PVC 60/200, PET 200/320 | |
Elastic Section modulus stiffener | 18.4, 57.3, 94.8 cm3 | |
Stiffener spacing | 0.25, 0.5, 0.67 m |
Method | Pressure (MPa) | |
---|---|---|
Average | Peak | |
FSICR 1B | 1.71 | 3.06 |
IACS PC 6 | 1.71 | 2.23 |
Method | Pressure Patch | Type |
---|---|---|
IACS PC 6 | 0.307 m × 1.02 m | Nominal area |
Probabilistic Method | 0.096 m2 | HPZ area |
Criteria | Limit |
---|---|
Peak stress | <90% of yield stress |
Maximum displacement | Metal grillages: 0.01b = 20 mm [38] Sandwich: 0.02b = 40 mm [32] |
Composite IRFs | 0.75–0.95 |
Material | Stiffener Spacing (m) | Stringer Spacing (m) | Thickness (m) | Stiffener Z (cm3) | Stringer Z (cm3) | SpW (MPa/kg) | Eq. Stress (MPa) | Mass (kg) | |
---|---|---|---|---|---|---|---|---|---|
Metal Grillage | Aluminum | 0.25 | 1 | 0.015 | 18 | 150 | 0.354 | 238 | 495 |
Steel | 0.25 | 0.5 | 0.015 | 18 | 150 | 0.016 | 211 | 1738 | |
Face material | Core material | Ply thickness (mm) | Core thickness (mm) | No. of stiffeners | Stiffener Z (cm3) | SpW | Hashin IRF | Mass (kg) | |
Sandwich | C230UD | PVC200/PETGR200 | 0.4 | 175 | - | - | 1.01/0.99 | 0.79 | 268 |
C395UD | PVC200/PETGR200 | 0.4 | 175 | - | - | 1.08/1.06 | 0.78/0.77 | 269 | |
E-Glass | PVC200 | 0.4 | 450 | - | - | 0.193 | 0.89 | 611 | |
Stiffened Sandwich | C230UD | PETGR200 | 0.3 | 140 | 4 | 18 | 0.129 | 0.96 | 330 |
C395UD | PETGR200 | 0.2 | 150 | 3 | 18 | 0.35 | 0.91 | 295 | |
E-Glass | PVC60 | 0.4 | 150 | 5 | 95 | 0.222 | 0.89 | 512 |
Material | Stiffener Spacing (m) | Stringer Spacing (m) | Thickness (m) | Stiffener Z (cm3) | Stringer Z (cm3) | DpW (MPa/kg) | Deformation | Mass (kg) | |
---|---|---|---|---|---|---|---|---|---|
Metal Grillage | Aluminium | 0.67 | 1 | 0.01 | 18 | 150 | 0.15 | 18.9 | 374 |
Steel | 0.5 | 0.67 | 0.01 | 18 | 150 | 0.09 | 18 | 1249 | |
Face material | Core material | Ply thickness (mm) | Core thickness (mm) | No. of stiffeners | Stiffener Z (cm3) | DpW | Deformation | Mass (kg) | |
Sandwich | C230UD | PVC200 | 0.3 | 175 | - | - | 0.968 | 32.1 | 253 |
C395UD | PVC200 | 0.4 | 125 | - | - | 0.52 | 36.1 | 209 | |
E-Glass | PVC200 | 0.3 | 225 | - | - | 0.34 | 36 | 323 | |
C230UD | PETGR200 | 0.2 | 150 | 3 | 18 | 1.13 | 30.1 | 293 | |
Stiffened Sandwich | C395UD | PETGR200 | 0.2 | 140 | 3 | 18 | 0.53 | 34.8 | 283 |
E-Glass | PETGR200 | 0.3 | 150 | 3 | 18 | 0.191 | 37.3 | 379 |
Parameter | Symbol | SS | MS | F | p-Value | F Crit | Rank |
---|---|---|---|---|---|---|---|
Plate thickness | M1 | 2.97 | 1.48 | 5.79 | 0.003 | 3.01 | 3 |
Material | M2 | 2.73 | 2.73 | 12.10 | 0.0005 | 3.86 | 1 |
Stiffener Z | M3 | 2.36 | 2.36 | 8.44 | 0.004 | 3.87 | 2 |
Stringer Z | M4 | 2.97 | 1.48 | 5.79 | 0.003 | 3.01 | 4 |
Ice Stiffener | M5 | 0.35 | 0.35 | 1.42 | 0.24 | 3.9 | |
Ice Stringer | M6 | 1.14 | 1.14 | 4.94 | 0.026 | 3.87 | 5 |
Stringer spacing | M7 | 0.18 | 0.18 | 0.78 | 0.38 | 3.9 | |
Stiffener spacing | M8 | 1.49 | 0.74 | 3.09 | 0.051 | 3.11 |
Parameter | Symbol | SS | MS | F | p-Value | F Crit | Rank |
---|---|---|---|---|---|---|---|
Ply configuration | S1 | 0.46 | 0.23 | 0.17 | 0.84 | 3.02 | |
Ply thickness | S2 | 76.52 | 38.26 | 33.38 | 2.3 × 10−14 | 3.01 | 4 |
Light core thickness | S3 | 98.67 | 49.34 | 49.08 | 4.06 × 10−19 | 3.03 | 3 |
Dense core thickness | S4 | 22.51 | 5.63 | 32.77 | 1.98 × 10−21 | 2.41 | 2 |
Face material | S5 | 22.36 | 11.18 | 65.40 | 4.66 × 10−23 | 3.04 | 1 |
Core material | S6 | 0.017 | 0.008 | 0.03 | 0.97 | 3.06 |
Parameter | Symbol | SS | MS | F | p-Value | F Crit | Rank |
---|---|---|---|---|---|---|---|
Ply thickness | T1 | 47.31 | 23.66 | 54.46 | 3.02 × 10−71 | 3.002 | 1 |
Fat core thickness | T2 | 101.31 | 50.65 | 175.00 | 1.93 × 10−61 | 3.01 | 2 |
Thin core thickness | T3 | 23.78 | 11.89 | 59.09 | 8.07 × 10−25 | 3.006 | 4 |
Face material | T4 | 83.23 | 41.62 | 101.26 | 4.92 × 10−42 | 3.002 | 3 |
Core material | T5 | 12.30 | 6.15 | 29.80 | 3.63 × 10−13 | 3.008 | 5 |
Stiffener Z | T6 | 71.91 | 35.95 | 4.09 | 0.017 | 3.002 | 6 |
Stiffener spacing | T7 | 2.42 | 1.21 | 3.19 | 0.042 | 3.014 | 7 |
Ice stiffener | T8 | 0.00014 | 0.00014 | 0.000824 | 0.98 | 3.86 |
Interaction | SS | MS | F | p-Value | Interaction | SS | MS | F | p-Value |
---|---|---|---|---|---|---|---|---|---|
T1T3 | 0.035 | 0.035 | 1.671 | 0.203 | T3T6 | 0.009 | 0.009 | 0.406 | 0.528 |
T1T4 | 0.052 | 0.052 | 2.497 | 0.122 | T3T7 | 0.563 | 0.563 | 26.810 | 0.000 |
T1T5 | 0.050 | 0.050 | 2.386 | 0.130 | T4T5 | 0.306 | 0.306 | 14.579 | 0.000 |
T1T6 | 0.124 | 0.124 | 5.922 | 0.019 | T4T6 | 0.044 | 0.044 | 2.085 | 0.156 |
T1T7 | 0.007 | 0.007 | 0.324 | 0.572 | T4T7 | 0.042 | 0.042 | 1.980 | 0.167 |
T3T4 | 0.047 | 0.047 | 2.218 | 0.144 | 0.239 | 0.239 | 11.389 | 0.002 | |
0.134 | 0.134 | 6.377 | 0.015 | 1.038 | 1.038 | 49.404 | 0.000 | ||
T6T7 | 0.139 | 0.139 | 6.617 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheemakurthy, H.; Barsoum, Z.; Burman, M.; Garme, K. Lightweight Structural Concepts in Bearing Quasi-Static Ice Hull Interaction Loads. J. Mar. Sci. Eng. 2022, 10, 416. https://doi.org/10.3390/jmse10030416
Cheemakurthy H, Barsoum Z, Burman M, Garme K. Lightweight Structural Concepts in Bearing Quasi-Static Ice Hull Interaction Loads. Journal of Marine Science and Engineering. 2022; 10(3):416. https://doi.org/10.3390/jmse10030416
Chicago/Turabian StyleCheemakurthy, Harsha, Zuheir Barsoum, Magnus Burman, and Karl Garme. 2022. "Lightweight Structural Concepts in Bearing Quasi-Static Ice Hull Interaction Loads" Journal of Marine Science and Engineering 10, no. 3: 416. https://doi.org/10.3390/jmse10030416
APA StyleCheemakurthy, H., Barsoum, Z., Burman, M., & Garme, K. (2022). Lightweight Structural Concepts in Bearing Quasi-Static Ice Hull Interaction Loads. Journal of Marine Science and Engineering, 10(3), 416. https://doi.org/10.3390/jmse10030416