Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment Sampling
2.2. Experimental Setup and EKR Test
2.3. Analytical Methods
3. Results
3.1. Current Variation and Electro-Osmotic Flow (EOF)
3.2. Sediment pH and Electrical Conductivity (EC)
3.3. Metal Removal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svensson, N.; Norén, A.; Modin, O.; Karlfeldt Fedje, K.; Rauch, S.; Strömvall, A.-M.; Andersson-Sköld, Y. Integrated Cost and Environmental Impact Assessment of Management Options for Dredged Sediment. Waste Manag. 2022, 138, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Song, Y.; Yuan, P.; Cui, X.; Qiu, G. The Remediation of Heavy Metals Contaminated Sediment. J. Hazard. Mater. 2009, 161, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Perelo, L.W. Review: In Situ and Bioremediation of Organic Pollutants in Aquatic Sediments. J. Hazard. Mater. 2010, 177, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, K.R.; Urbanek, A.; Khodadoust, A.P. Electroosmotic Dewatering of Dredged Sediments: Bench-Scale Investigation. J. Environ. Manag. 2006, 78, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Olivier, J.; Vaxelaire, J.; Hoadley, A.F.A. Electrical Field: A Historical Review of Its Application and Contributions in Wastewater Sludge Dewatering. Water Res. 2010, 44, 2381–2407. [Google Scholar] [CrossRef]
- Ammami, M.T.; Song, Y.; Benamar, A.; Portet-Koltalo, F.; Wang, H. Electro-Dewatering of Dredged Sediments by Combined Effects of Mechanical and Electrical Processes: Influence of Operating Conditions. Electrochim. Acta 2020, 353, 136462. [Google Scholar] [CrossRef]
- Cameselle, C.; Reddy, K.R. Development and Enhancement of Electro-Osmotic Flow for the Removal of Contaminants from Soils. Electrochim. Acta 2012, 86, 10–22. [Google Scholar] [CrossRef]
- Nogueira, M.G.; Pazos, M.; Sanromán, M.A.; Cameselle, C. Improving on Electrokinetic Remediation in Spiked Mn Kaolinite by Addition of Complexing Agents. Electrochim. Acta 2007, 52, 3349–3354. [Google Scholar] [CrossRef]
- Amrate, S.; Akretche, D.E.; Innocent, C.; Seta, P. Removal of Pb from a Calcareous Soil during EDTA-Enhanced Electrokinetic Extraction. Sci. Total Environ. 2005, 349, 56–66. [Google Scholar] [CrossRef]
- Giannis, A.; Nikolaou, A.; Pentari, D.; Gidarakos, E. Chelating Agent-Assisted Electrokinetic Removal of Cadmium, Lead and Copper from Contaminated Soils. Environ. Pollut. 2009, 157, 3379–3386. [Google Scholar] [CrossRef]
- Song, Y.; Ammami, M.-T.; Benamar, A.; Mezazigh, S.; Wang, H. Effect of EDTA, EDDS, NTA and Citric Acid on Electrokinetic Remediation of As, Cd, Cr, Cu, Ni, Pb and Zn Contaminated Dredged Marine Sediment. Environ. Sci. Pollut. Res. 2016, 23, 10577–10586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Qiu, Z.; Tang, H.; Wang, H.; Sima, W.; Liang, C.; Liao, Y.; Li, Z.; Wan, S.; Dong, J. Coupled with EDDS and Approaching Anode Technique Enhanced Electrokinetic Remediation Removal Heavy Metal from Sludge. Environ. Pollut. 2021, 272, 115975. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, Z.; Li, A.; Cui, C. Enhanced Electrokinetic Remediation of Heavy Metals Contaminated Soil by Biodegradable Complexing Agents. Environ. Pollut. 2021, 283, 117111. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.-C.; Yang, J.-S.; Jeon, E.-K.; Baek, K. Enhanced-Electrokinetic Extraction of Heavy Metals from Dredged Harbor Sediment. Environ. Sci. Pollut. Res. 2015, 22, 9912–9921. [Google Scholar] [CrossRef]
- Song, Y.; Cang, L.; Xu, H.; Wu, S.; Zhou, D. Migration and Decomplexation of Metal-Chelate Complexes Causing Metal Accumulation Phenomenon after Chelate-Enhanced Electrokinetic Remediation. J. Hazard. Mater. 2019, 377, 106–112. [Google Scholar] [CrossRef]
- Song, Y.; Cang, L.; Zuo, Y.; Yang, J.; Zhou, D.; Duan, T.; Wang, R. EDTA-Enhanced Electrokinetic Remediation of Aged Electroplating Contaminated Soil Assisted by Combining Dual Cation-Exchange Membranes and Circulation Methods. Chemosphere 2020, 243, 125439. [Google Scholar] [CrossRef]
- Ammami, M.T.; Benamar, A.; Wang, H.; Bailleul, C.; Legras, M.; Le Derf, F.; Portet-Koltalo, F. Simultaneous Electrokinetic Removal of Polycyclic Aromatic Hydrocarbons and Metals from a Sediment Using Mixed Enhancing Agents. Int. J. Environ. Sci. Technol. 2014, 11, 1801–1816. [Google Scholar] [CrossRef] [Green Version]
- Maturi, K.; Reddy, K.R.; Cameselle, C. Surfactant-Enhanced Electrokinetic Remediation of Mixed Contamination in Low Permeability Soil. Null 2009, 44, 2385–2409. [Google Scholar] [CrossRef]
- Ammami, M.T.; Portet-Koltalo, F.; Benamar, A.; Duclairoir-Poc, C.; Wang, H.; Le Derf, F. Application of Biosurfactants and Periodic Voltage Gradient for Enhanced Electrokinetic Remediation of Metals and PAHs in Dredged Marine Sediments. Chemosphere 2015, 125, 1–8. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005; Volume 3. [Google Scholar]
- Maturi, K.; Reddy, K.R. Simultaneous Removal of Organic Compounds and Heavy Metals from Soils by Electrokinetic Remediation with a Modified Cyclodextrin. Chemosphere 2006, 63, 1022–1031. [Google Scholar] [CrossRef]
- Acar, Y.B.; Alshawabkeh, A.N. Principles of Electrokinetic Remediation. Environ. Sci. Technol. 1993, 27, 2638–2647. [Google Scholar] [CrossRef]
- Kaya, A.; Yukselen, Y. Zeta Potential of Clay Minerals and Quartz Contaminated by Heavy Metals. Can. Geotech. J. 2005, 42, 1280–1289. [Google Scholar] [CrossRef]
- Gu, Y.-Y.; Yeung, A.T.; Koenig, A.; Li, H.-J. Effects of Chelating Agents on Zeta Potential of Cadmium-Contaminated Natural Clay. Sep. Sci. Technol. 2009, 44, 2203–2222. [Google Scholar] [CrossRef]
- Popov, K.; Glazkova, I.; Myagkov, S.; Petrov, A.; Sedykh, E.; Bannykh, L.; Yachmenev, V. Zeta-Potential of Concrete in Presence of Chelating Agents. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 299, 198–202. [Google Scholar] [CrossRef]
- Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N.; Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. Impact of Carbonate on the Efficiency of Heavy Metal Removal from Kaolinite Soil by the Electrokinetic Soil Remediation Method. J. Hazard. Mater. 2010, 173, 87–94. [Google Scholar] [CrossRef]
- Suzuki, T.; Niinae, M.; Koga, T.; Akita, T.; Ohta, M.; Choso, T. EDDS-Enhanced Electrokinetic Remediation of Heavy Metal-Contaminated Clay Soils under Neutral PH Conditions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 440, 145–150. [Google Scholar] [CrossRef]
- Zhang, T.; Zou, H.; Ji, M.; Li, X.; Li, L.; Tang, T. Enhanced Electrokinetic Remediation of Lead-Contaminated Soil by Complexing Agents and Approaching Anodes. Environ. Sci. Pollut. Res. 2014, 21, 3126–3133. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R.; Rolle, E.; Ceremigna, D.; De Propris, L.; Gabellini, M.; Tornato, A. A Kinetic Study of Chelant-Assisted Remediation of Contaminated Dredged Sediment. J. Hazard. Mater. 2006, 137, 1458–1465. [Google Scholar] [CrossRef]
- Gidarakos, E.; Giannis, A. Chelate Agents Enhanced Electrokinetic Remediation for Removal Cadmium and Zinc by Conditioning Catholyte PH. Water Air Soil Pollut. 2006, 172, 295–312. [Google Scholar] [CrossRef]
Parameter | Values | Standards |
---|---|---|
Clay | 6.3% | Multisizer 2000-Malvern, UK |
Silt | 86.2% | |
Sand | 7.5% | |
Organic matter content | 2.6% | NF EN 12879 |
Carbonate | 30.5% | NF EN ISO 10693 |
pH | 8.4 ± 0.2 | NF ISO 10390 |
Electrical conductivity | 1.82 ± 0.20 mS cm−1 | NF ISO 11265 |
Moisture content | 84 ± 1% | NF P 94-050 |
Specific gravity | 1.36 | |
Hydraulic conductivity | 3.3 × 10−7 mS−1 | NF X30-442 |
Cd | 4.6 ± 0.006 | * mg kg−1 ISO 12914 |
Cr | 136.34 ± 0.20 | |
Cu | 63.97 ± 0.24 | |
Pb | 64.66 ± 0.22 | |
Zn | 222.80 ± 0.67 |
Exp. N° | Anolyte and Catholyte | Concentration | Voltage Gradient | Mode |
---|---|---|---|---|
1 | EDDS | 0.1 M | 1 Vcm−1 | Periodic |
2 | CA | 5 days on/2 days off |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammami, M.-T.; Benamar, A.; Portet-Koltalo, F. Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid. J. Mar. Sci. Eng. 2022, 10, 553. https://doi.org/10.3390/jmse10040553
Ammami M-T, Benamar A, Portet-Koltalo F. Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid. Journal of Marine Science and Engineering. 2022; 10(4):553. https://doi.org/10.3390/jmse10040553
Chicago/Turabian StyleAmmami, Mohamed-Tahar, Ahmed Benamar, and Florence Portet-Koltalo. 2022. "Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid" Journal of Marine Science and Engineering 10, no. 4: 553. https://doi.org/10.3390/jmse10040553
APA StyleAmmami, M. -T., Benamar, A., & Portet-Koltalo, F. (2022). Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid. Journal of Marine Science and Engineering, 10(4), 553. https://doi.org/10.3390/jmse10040553