Coastal Protection Using Integration of Mangroves with Floating Barges: An Innovative Concept
Abstract
:1. Background
2. Introduction
3. Methodology
4. Proposed Experimental Research and Preliminary Design Methodology
5. Conclusions
- Mangroves have a life span of 20–100 years. Once the mangroves are well rooted in the soil, the mangroves will be there in the beach for the next 20–100 years.
- Barge assisted mangrove coastal protection method is environmentally friendly. As mangroves are biodegradable it does not pose a threat to the environment.
- Mangroves improve the aesthetic appearance of the beach.
- This method is a long-term solution to the soil erosion in beaches or shores. Once the mangroves are fully grown it requires less or negligible maintenance compared to other hard coastal protection structures.
- This method can also be used to protect the shores of intracoastal waters where waves are created from the passage of the vessels.
6. Limitations
- When extreme waves approach a coast where the barges are moored to the seabed, the incoming waves can damage the mooring of the barges.
- The mangrove barge integration method cannot be used for beaches where the waves encountering the beaches are rough.
- Mangroves can create problems to native plant species by absorbing the nutrients of native plants.
- Mangroves can pose environmental problems, creating a source for breeding of mosquitoes.
7. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Dai, J.; Wang, C.M.; Utsunomiya, T.; Duan, W. Review of recent research and developments on floating breakwaters. Ocean Eng. 2018, 158, 132–151. [Google Scholar] [CrossRef]
- McCartney, B.L. Floating Breakwater Design. J. Waterw. Port Coast. Ocean Eng. 1985, 111, 304–318. [Google Scholar] [CrossRef]
- Briggs, M.; Ye, W.; Demirbilek, Z.; Zhang, J. Field and numerical comparisons of the RIBS floating breakwater. J. Hydraul. Res. 2002, 40, 289–301. [Google Scholar] [CrossRef]
- Sannasiraj, S.A.; Sundar, V.; Sundaravadivelu, R. Mooring forces and motion responses of pontoon-type floating breakwaters. Ocean Eng. 1998, 25, 27–48. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, H.; Yang, S.; Yang, L.; Chen, S.; Li, C. The hydraulic characteristics and shape optimisation of submerged Box-type floating breakwater. Ships Offshore Struct. 2021, 16, 1–11. [Google Scholar] [CrossRef]
- Clinkenbeard, J. Tethered Float Breakwater. In Proceedings of the OCEANS ’79 Conference, San Diego, CA, USA, 17–19 September 1979; pp. 450–453. [Google Scholar]
- Candle, R.D.; Piper, D.R. The proposed goodyear modular mat type scrap tire floating breakwater. Goodyear Rep. 1974, 301, 1–68. [Google Scholar]
- Cabral, R.; Primeau, R. Reef Re-Creation-Novel Restoration Strategies for the Osborne Tire Reef. Master’s Thesis, University of Michigan, Ann Arbor, MI, USA, August 2015. [Google Scholar]
- Morley, D.M.; Sherman, R.L.; Jordan, L.K.; Banks, K.W.; Quinn, T.P.; Spieler, R.E. Environmental enhancement gone awry: Characterization of an artificial reef constructed from waste vehicle tires. Environ. Probl. Coast. Reg. 2008, 7, 73–87. [Google Scholar]
- Allahgholi, A. Coral Reef Restoration–A Guide to Effective Rehabilitation Techniques. Master’s Thesis, Sustainable Natural Resource Management, U.N. mandated University for Peace in Costa Rica, San José, Costa Rica, 3 September 2014. [Google Scholar]
- Arami, A.; Takagi, N.; Kobayashi, A. Design of Floating Breakwater of New Type and Its Damage Situation in Typhoon Disaster. In Proceedings of the Seventeenth International Offshore and Offshore and Polar Engineering Conference Proceedings, Lisbon, Portugal, 1–6 July 2007. [Google Scholar]
- Cheng, X.F. A Kind of Floating Breakwater Sheltering Deep Water Aquaculture. Appl. Mech. Mater. 2014, 580, 2170–2176. [Google Scholar] [CrossRef]
- Chu, Y.I.; Wang, C.M.; Park, J.C.; Lader, P.F. Review of cage and containment tank designs for offshore fish farming. Aquaculture 2020, 519, 734928. [Google Scholar] [CrossRef]
- Zhang, C.; Fonseca, N.; Ren, N.; Magee, A.R.; Ang, K.K. Experimental and numerical investigation of wave-induced hydrodynamic interactions of a sub-floating hydrocarbon storage tank system in shallow waters. Ocean Eng. 2020, 216, 108104. [Google Scholar] [CrossRef]
- Tay, Z.Y.; Wang, C.M.; Utsunomiya, T. Hydroelastic responses and interactions of floating fuel storage modules placed side-by-side with floating breakwaters. Mar. Struct. 2009, 22, 633–658. [Google Scholar] [CrossRef]
- Zhao, X.L.; Ning, D.Z.; Zou, Q.P.; Qiao, D.S.; Cai, S.Q. Hybrid floating breakwater-WEC system: A review. Ocean Eng. 2019, 186, 106126. [Google Scholar] [CrossRef]
- Howe, D.; Nader, J.-R.; Macfarlane, G. Experimental investigation of multiple Oscillating Water Column Wave Energy Converters integrated in a floating breakwater: Energy extraction performance. Appl. Ocean Res. 2020, 97, 102086. [Google Scholar] [CrossRef]
- Murali, K.; Mani, J.S. Performance of Cage Floating Breakwater. J. Waterw. Port Coast. Ocean Eng. 1997, 123, 172–179. [Google Scholar] [CrossRef]
- Dong, G.H.; Zheng, Y.N.; Li, Y.C.; Teng, B.; Guan, C.T.; Lin, D.F. Experiments on wave transmission coefficients of floating breakwaters. Ocean Eng. 2008, 35, 931–938. [Google Scholar] [CrossRef]
- Liang, N.-K.; Huang, J.-S.; Li, C.-F. A study of spar buoy floating breakwater. Ocean Eng. 2004, 31, 43–60. [Google Scholar] [CrossRef]
- Miththapala, S. Mangroves Coastal Ecosystem Series. In Ecosystems and Livelihoods Group Asia; IUCN: Columbo, Sri Lanka, 2008; Volume 2, pp. 1–28. [Google Scholar]
- Duke, N.; Ball, M.; Ellison, J. Factors Influencing Biodiversity and Distributional Gradients in Mangroves. Glob. Ecol. Biogeogr. Lett. 1998, 7, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Carugati, L.; Gatto, B.; Rastelli, E.; Martire, M.L.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, H.J. The use of mangroves in coastal protection. In PIANC COPEDEC 2012, Proceedings of the 8th International Conference on Coastal and Port Engineering in Developing Countries, Chennai, India, 20–24 February 2012; Pianc: Brussels, Belgium, 2012. [Google Scholar]
- McIvor, A.L.; Möller, I.; Spencer, T.; Spalding, M. Reduction of Wind and Swell Waves by Mangroves. Natural Coastal Protection Series: Report 1. Cambridge Coastal Research Unit Working Paper 40; The Nature Conservancy and Wetlands International: Arlington, VA, USA, 2012. [Google Scholar]
- Mazda, Y.; Magi, M.; Kogo, M.; Hong, P.N. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1997, 1, 127–135. [Google Scholar] [CrossRef]
- Kathiresan, K.; Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 2005, 65, 601–606. [Google Scholar] [CrossRef]
- Putz, F.E.; Chan, H.T. Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. For. Ecol. Manag. 1986, 17, 211–230. [Google Scholar] [CrossRef]
- Spalding, M.; McIvor, A.; Tonneijck, F.; Tol, S.; Eijk, P.V. Mangroves for Coastal Defence Guidelines for Coastal Managers and Policy Makers; Wetlands International and The Nature Conservancy: Arlington, VA, USA, 2014; p. 42. [Google Scholar]
- Dittmar, T.; Hertkorn, N.; Kattner, G.; Lara, R.J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 2006, 20, GB1012. [Google Scholar] [CrossRef]
- Eong, O.J. Mangroves—A carbon source and sink. Chemosphere 1993, 27, 1097–1107. [Google Scholar] [CrossRef]
- van Oudenhoven, A.P.; Siahainenia, A.J.; Sualia, I.; Tonneijck, F.H.; van der Ploeg, S.; de Groot, R.S.; Leemans, R. Effects of different management regimes on mangrove ecosystem services in Java, Indonesia. Ocean Coast. Manag. 2015, 116, 353–367. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Guo, F. Paradigms of mangroves in treatment of anthropogenic wastewater pollution. Sci. Total Environ. 2016, 544, 971–979. [Google Scholar] [CrossRef]
- Spalding, M.; Parrett, C.L. Global patterns in mangrove recreation and tourism. Mar. Policy 2019, 110, 103540. [Google Scholar] [CrossRef]
- Yuanita, N.; Kurniawan, A.; Nurmansyah, I.M.; Rizaldi, F.M. A physical model simulation of combination of a geo-bag dike and mangrove vegetation as a natural coastal protection system for the Indonesian shoreline. Appl. Ocean Res. 2021, 108, 102516. [Google Scholar] [CrossRef]
- Hashim, R.; Kamali, B.; Tamin, N.M.; Zakaria, R. An integrated approach to coastal rehabilitation: Mangrove restoration in Sungai Haji Dorani, Malaysia. Estuar. Coast. Shelf Sci. 2010, 86, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Kamali, B.; Hashim, R.; Akib, S. Efficiency of an integrated habitat stabilisation approach to coastal erosion management. Int. J. Phys. Sci. 2010, 5, 1401–1405. [Google Scholar]
- Larsen, J.; Hubeli, R. Rhizolith Island Prototyping a Resilient Coastal Infrastructure. In Proceedings of the 2018 Intersections Symposium on Design and Resilience, New York, NY, USA, 22 June 2018. [Google Scholar]
- Akbar, A.A.; Sartohadi, J.; Djohan, T.S.; Ritohardoyo, S. The role of breakwaters on the rehabilitation of coastal and mangrove forests in West Kalimantan, Indonesia. Ocean Coast. Manag. 2017, 138, 50–59. [Google Scholar] [CrossRef]
- Fitri, A.; Yao, L.; Sofawi, B. Evaluation of mangrove rehabilitation project at Carey Island coast, Peninsular Malaysia based on long-term geochemical changes. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 365, p. 012055. [Google Scholar] [CrossRef]
- Fitri, A.; Hashim, R.; Abolfathi, S.; Maulud, K.N.A. Dynamics of Sediment Transport and Erosion-Deposition Patterns in the Locality of a Detached Low-Crested Breakwater on a Cohesive Coast. Water 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Stanley, O.D.; Lewis III, R.R. Strategies for mangrove rehabilitation in an eroded coastline of Selangor, Peninsular Malaysia. J. Coast. Zone Manag. 2009, 12, 142–154. [Google Scholar]
- Sreeranga, S.; Takagi, H.; Shirai, R. Community-Based Portable Reefs to Promote Mangrove Vegetation Growth: Bridging between Ecological and Engineering Principles. Int. J. Environ. Res. Public Health 2021, 18, 590. [Google Scholar] [CrossRef]
- Ahrens, J.P. Stability of Reef Breakwaters. J. Waterw. Port Coastal Ocean Eng. 1989, 115, 221–234. [Google Scholar] [CrossRef]
- Bao, T.Q. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 2011, 53, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Elsheikh, A.K.; Mostafa, Y.E.; Mohamed, M.M. A comparative study between some different types of permeable breakwaters according to wave energy dissipation. Ain Shams Eng. J. 2022, 13, 101646. [Google Scholar] [CrossRef]
- Hashim, A.M.; Catherine, S.M.P. A Laboratory Study on Wave Reduction by Mangrove Forests. APCBEE Procedia 2013, 5, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Sabari, A.A.; Oates, A.R.; Akib, S. Experimental Investigation of Wave Attenuation Using a Hybrid of Polymer-Made Artificial Xbloc Wall and Mangrove Root Models. Eng 2021, 2, 15. [Google Scholar] [CrossRef]
- Srivastava, P.B.L.; Guan, S.L.; Muktar, A. Progress of crop in some Rhizophora stands before first thinning in Matang Mangrove Reserve of Peninsular Malaysia. Pertanika 1988, 11, 365–374. [Google Scholar]
- Kairo, J.G.; Lang’At, J.K.; Dahdouh-Guebas, F.; Bosire, J.; Karachi, M. Structural development and productivity of replanted mangrove plantations in Kenya. For. Ecol. Manag. 2008, 255, 2670–2677. [Google Scholar] [CrossRef]
- Furukawa, K.; Wolanski, E.; Mueller, H. Currents and Sediment Transport in Mangrove Forests. Estuar. Coast. Shelf Sci. 1997, 44, 301–310. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Jie, C.; Chen, X.; Cui, J.; Yuan, Z.M.; Incecik, A. Experimental study of a new type of floating breakwater. Ocean Eng. 2015, 105, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.G. Beach Nourishment—Theory and Practice; World Scientific: Singapore, 2003; Volume 18, pp. 1–19. [Google Scholar]
- Stive, M.J.; De Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.; van Gelder-Maas, C.; Van Thiel de Vries, J.S.; De Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A New Alternative to Saving Our Beaches from Sea-Level Rise: The Sand Engine. J. Coast. Res. 2013, 290, 1001–1008. [Google Scholar] [CrossRef]
- Chen, M.; Guo, H.; Wang, R.; Tao, R.; Cheng, N. Effects of Gap Resonance on the Hydrodynamics and Dynamics of a Multi-Module Floating System with Narrow Gaps. J. Mar. Sci. Eng. 2021, 9, 1256. [Google Scholar] [CrossRef]
- Moradi, N.; Zhou, T.; Cheng, L. Effect of inlet configuration on wave resonance in the narrow gap of two fixed bodies in close proximity. Ocean Eng. 2015, 103, 88–102. [Google Scholar] [CrossRef]
Gap Width (m) | Resonant Frequency (Rad/s) |
---|---|
8 | 0.3 |
5 | 0.38 |
2 | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raju, R.D.; Arockiasamy, M. Coastal Protection Using Integration of Mangroves with Floating Barges: An Innovative Concept. J. Mar. Sci. Eng. 2022, 10, 612. https://doi.org/10.3390/jmse10050612
Raju RD, Arockiasamy M. Coastal Protection Using Integration of Mangroves with Floating Barges: An Innovative Concept. Journal of Marine Science and Engineering. 2022; 10(5):612. https://doi.org/10.3390/jmse10050612
Chicago/Turabian StyleRaju, Rahul Dev, and Madasamy Arockiasamy. 2022. "Coastal Protection Using Integration of Mangroves with Floating Barges: An Innovative Concept" Journal of Marine Science and Engineering 10, no. 5: 612. https://doi.org/10.3390/jmse10050612
APA StyleRaju, R. D., & Arockiasamy, M. (2022). Coastal Protection Using Integration of Mangroves with Floating Barges: An Innovative Concept. Journal of Marine Science and Engineering, 10(5), 612. https://doi.org/10.3390/jmse10050612