Leaching Remediation of Dredged Marine Sediments Contaminated with Heavy Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Contaminated Dredged Sediments
2.2. Leaching Experiments
2.3. Analytical Methods and Data Processing
3. Results and Discussion
3.1. Characterization of the Initial Dredged Sediments
3.2. Factors Governing the Leaching Efficiency of Heavy Metals by Natural Organic Acids
3.3. Kinetics of Leaching by Natural Organic Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrans, L.; Jani, Y.; Gao, L.; Hogland, M. Characterization of dredged sediments: A first guide to define potentially valuable compounds—The case of Malmfjrden Bay, Sweden. Adv. Geosci. 2019, 49, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Hamdoun, H.; Van-Veen, E.; Basset, B.; Lemoine, M.; Coggan, J.; Leleyter, L.; Baraud, F. Characterization of harbor sediments from the English Channel: Assessment of heavy metal enrichment, biological effect and mobility. Mar. Pollut. Bull. 2015, 90, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donázar-Aramendía, I.; Sánchez-Moyano, J.E.; García-Asencio, I.; Miró, J.M.; García-Gómez, J.C. Environmental consequences of dredged-material disposal in a recurrent marine dumping area near to Guadalquivir estuary, Spain. Mar. Pollut. Bull. 2020, 161, 111736. [Google Scholar] [CrossRef] [PubMed]
- Assessment Procedure for Marine Dumping of Dredged Material, GB 30980-2014. Available online: www.sac.gov.cn (accessed on 10 March 2022).
- Abdallah, M.A.M.; Badr-ElDin, A.M. Ecological risk assessment of surficial sediment by heavy metals from a submerged archaeology harbor, South Mediterranean Sea, Egypt. Acta. Geochim. 2020, 39, 226–235. [Google Scholar] [CrossRef]
- Li, H.; Xu, L.; Feng, N.; Lu, A.; Chen, W.; Wang, Y. Occurrence, risk assessment, and source of heavy metals in Liaohe River Protected Area from the watershed of Bohai Sea, China. Mar. Pollut. Bull. 2021, 169, 112489. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.; Singh, M.P. Heavy metal contamination in water and its possible sources. In Heavy Metals in the Environment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 179–189. [Google Scholar]
- Guo, W.; Zou, J.; Liu, S.; Chen, X.; Kong, X.; Zhang, H.; Xu, T. Seasonal and Spatial Variation in Dissolved Heavy Metals in Liaodong Bay, China. Int. J. Environ. Res. Public Health 2022, 19, 608. [Google Scholar] [CrossRef]
- Chen, S.B.; Wang, M.; Li, S.S.; Zhao, Z.Q.; Wen-di, E. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China. J. Integr. Agr. 2018, 17, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Saleh, Y.S. Evaluation of sediment contamination in the Red Sea coastal area combining multiple pollution indices and multivariate statistical techniques. Int. J. Sediment Res. 2021, 36, 243–254. [Google Scholar] [CrossRef]
- Mensah, M.B.; Lewis, D.J.; Boadi, N.O.; Awudza, J.A. Heavy metal pollution and the role of inorganic nanomaterials in environmental remediation. Roy. Soc. Open Sci. 2021, 8, 201485. [Google Scholar] [CrossRef]
- Luo, Y.; Tu, C. Twenty Years of Research and Development on Soil Pollution and Remediation in China; Science Press: Beijing, China, 2018; pp. 389–398. [Google Scholar]
- Remediation Case Studies: Thermal Desorption, Soil Washing, and In Situ Vitrification. Available online: https://www.epa.gov/Exe/ (accessed on 30 March 2022).
- Liu, J.; Zhao, L.; Liu, Q.; Li, J.; Qiao, Z.; Sun, P.; Yang, Y. A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int. J. Environ. Sci. Technol. 2021, 19, 601–624. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, S.H.; Zhang, Q.B.; Wang, W.W. Analysis of concepts, conditions and critical problems in environmental dredging. Res. Environ. Sci. 2017, 30, 1497–1504. (In Chinese) [Google Scholar]
- Donázar-Aramendía, I.; Sánchez-Moyano, J.E.; García-Asencio, I.; Miró, J.M.; Megina, C.; García-Gómez, J.C. Impact of dredged-material disposal on soft-bottom communities in a recurrent marine dumping area near to Guadalquivir estuary, Spain. Mar. Environ. Res. 2018, 3, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Noren, A.; Fedje, K.K.; Stromvall, A.M.; Rauch, S.; Andersson-Sköld, Y. Integrated assessment of management strategies for metal-contaminated dredged sediments—What are the best approaches for ports, marinas and waterways? Sci. Total. Environ. 2020, 716, 135510.1–135510.14. [Google Scholar] [CrossRef]
- Chu, C.Y.; Ko, T.H. Evaluation of Acid Leaching on the Removal of Heavy Metals and Soil Fertility in Contaminated Soil. J. Chem. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Yu, B.; Men, M.X.; Liu, P.J.; Wu, K.N. Leaching Effect of Organic Acids on Heavy Metal Contaminated Soil. Agri. Biotech. 2019, 8, 130–139. [Google Scholar]
- Yang, W.C.; Wang, Z.W.; Song, S.; Han, J.B.; Chen, H.; Wang, X.M.; Cheng, J.Y. Adsorption of copper (II) and lead (II) from seawater using hydrothermal biochar derived from Enteromorpha. Mar. Pollut. Bull. 2019, 149, 110586. [Google Scholar] [CrossRef]
- Couvidat, J.; Chatain, V.; Bouzahzah, H.; Benzaazoua, M. Characterization of how contaminants arise in a dredged marine sediment and analysis of the effect of natural weathering. Sci. Total. Environ. 2018, 624, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Su, M.; Qian, J.; Wang, Q.; Meng, F.; Ge, X.; Ye, Y.; Song, C. Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Sep. Purif. Technol. 2020, 242, 116822. [Google Scholar] [CrossRef]
- Alghanmi, S.I.; Al Sulamia, A.F.; El-Zayat, T.A.; Alhogbi, B.G.; Salam, M.A. Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: Kinetic and thermodynamics studies. Int. Soil. Water Conserv. Res. 2015, 3, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, J.; Yan, X.; Wang, X.; Zhang, J.; Huang, J.; Zhao, J. Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasoundassisted citric acid. J. Ind. Eng. Chem. 2015, 27, 368–372. [Google Scholar] [CrossRef]
- Geng, H.; Xu, Y.; Zheng, L.; Gong, H.; Dai, L.; Dai, X. An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environ. Pollut. 2020, 266, 115375. [Google Scholar] [CrossRef] [PubMed]
- Perez-Esteban, J.; Escolastico, C.; Moliner, A.; Masaguer, A. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 2013, 90, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Z.; Zhang, S.; Cao, Y.; Zhong, Q.; Wang, G.; Li, T.; Xu, X. Remediation of cadmium, lead and zinc in contaminated soil with CETSA and MA/AA. J. Hazard. Mater. 2019, 366, 177–183. [Google Scholar] [CrossRef]
- Moon, D.H.; Park, J.W.; Koutsospyros, A.; Cheong, K.H.; Chang, Y.Y.; Baek, K.; Jo, R.; Park, J.H. Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions. Environ. Earth Sci. 2016, 75, 884. [Google Scholar] [CrossRef]
- Geng, H.; Wang, F.; Yan, C.; Tian, Z.; Chen, H.; Zhou, B.; Yuan, R.; Yao, J. Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids. J. Hazard. Mater. 2020, 383, 121136. [Google Scholar] [CrossRef] [PubMed]
- Fest, E.; Temminghoff, E.; Comans, R.; Riemsdijk, W. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH. Geoderma 2008, 146, 66–74. [Google Scholar] [CrossRef]
- Zhang, J. Investigation of leaching remediation technology for heavy metal contaminated soil. Sci. Technol. 2018, 25, 1–4. [Google Scholar]
- Kocan, F.; Hicsonmez, U. Leaching kinetics of celestite in nitric acid solutions. Int. J. Min. Met. Mater. 2019, 26, 11–20. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Zhang, G.F.; Feng, Q.M.; Lu, Y.P.; Ou, L.M.; Huang, S.J. Acid leaching of vanadium from roasted residue of stone coal. Trans. Nonferrous Met. Soc. China 2010, 20, s107–s111. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wu, Y.Q. Remediation mechanism of multi—Heavy metal contaminated soil by using different chemical washing agents. J. Environ. Eng. 2018, 12, 2845–2854. (In Chinese) [Google Scholar]
- Havlin, J.L.; Westfall, D.G.; Olsen, S.R. Mathematical models for potassium release kinetics in calcareous soils. Soil. Sci. Soc. Am. J. 1985, 49, 371–376. [Google Scholar] [CrossRef]
- Dang, Y.P.; Dalal, D.G.; Edwards, D.G.; Tiller, K.G. Kinetics of zinc desorption from Vertisols. Soil. Sci. Soc. Am. J. 1994, 58, 1392–1399. [Google Scholar] [CrossRef]
- Reyhanitabar, A.; Karimian, N. Kinetics of copper desorption of selected calcareous soils from Iran. Am. Eur. J. Agr. Environ. Sci. 2008, 4, 287–293. [Google Scholar]
- Rashti, M.R.; Esfandbod, M.; Adhami, E.; Srivastava, P. Cadmium desorption behavior in selected sub-tropical soils: Effects of soil properties. J. Geochem. Explor. 2014, 144, 230–236. [Google Scholar] [CrossRef]
Experiment 1 | Experiment 2 | Experiment 3 | |
---|---|---|---|
Contaminated dredged sediments | 0.5 g per experiment | ||
Organic acids | oxalic acid, citric acid, tartaric acid, and malic acid | oxalic acid, citric acid, tartaric acid, and malic acid | oxalic acid, citric acid, tartaric acid, and malic acid |
Organic acid concentration (mmol/L) | 0, 5, 10, 20, 30, 50 | 20 | 20 |
Solid-to-liquid ratio | 1:20 | 1:10, 1:20, 1:30, 1:40 | 1:20 |
Leaching time (min) | 20 | 20 | 0, 5, 10, 20, 30, 60 |
Particle Composition | pH | Conductivity | Cation Exchange Capacity | Total Heavy Metals (mg/kg) | |||
---|---|---|---|---|---|---|---|
(mS/cm) | (cmol/kg) | Cu | Cd | Pb | |||
Dredged sediment | Silt (<63 μm): 52% Clay (< 2 μm): 31% | 7.47 | 1.21 | 9.68 | 42.1 | 0.3 | 54.7 |
Heavy Metal | Elovich Equation | Two-Constant Rate Equation | ||||
---|---|---|---|---|---|---|
αs | βs | R2 | a | b | R2 | |
Cu | 359 | 0.329 | 0.9931 | 27.9 | 0.09 | 0.9805 |
Cd | 5.3 | 1.667 | 0.9911 | 0.7 | 0.07 | 0.9843 |
Pb | 152 | 0.229 | 0.9943 | 28.9 | 0.12 | 0.9891 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, B.; Sun, Y.; Yang, W. Leaching Remediation of Dredged Marine Sediments Contaminated with Heavy Metals. J. Mar. Sci. Eng. 2022, 10, 636. https://doi.org/10.3390/jmse10050636
Wang Z, Li B, Sun Y, Yang W. Leaching Remediation of Dredged Marine Sediments Contaminated with Heavy Metals. Journal of Marine Science and Engineering. 2022; 10(5):636. https://doi.org/10.3390/jmse10050636
Chicago/Turabian StyleWang, Zhaowei, Bo Li, Yuanshu Sun, and Wenchao Yang. 2022. "Leaching Remediation of Dredged Marine Sediments Contaminated with Heavy Metals" Journal of Marine Science and Engineering 10, no. 5: 636. https://doi.org/10.3390/jmse10050636
APA StyleWang, Z., Li, B., Sun, Y., & Yang, W. (2022). Leaching Remediation of Dredged Marine Sediments Contaminated with Heavy Metals. Journal of Marine Science and Engineering, 10(5), 636. https://doi.org/10.3390/jmse10050636