Relationship between Engraulis japonicus Resources and Environmental Factors Based on Multi-Model Comparison in Offshore Waters of Southern Zhejiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Selection of Model Explanatory Variables
2.3. Model Theory
2.3.1. Two-Stage GAM
2.3.2. Tweedie GAM
2.3.3. GAMM
2.3.4. Ad Hoc-GAM
2.4. Model Selection
2.5. Cross-Validation
2.6. Comparison of Models
3. Results
3.1. Zero Value Ratio of E. japonicus
3.2. Spatial and Temporal Distribution of E. japonicus Resource Density
3.3. Results of Different Models
3.4. Relationship between E. japonicus Resource Density and Environmental Factors
3.5. Prediction Performance of the Model
4. Discussion
4.1. Comparison between Different Models
4.2. Relationship between E. japonicus Resource Density and Environmental Factors
4.3. Importance of Sampling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Liu, Z.N.; Chen, P.M.; Yao, L.J. Environmental factors affecting the spatiotemporal distribution of Decapterus maruadsi in the western Guangdong waters, China. Appl. Ecol. Env. Res. 2019, 17, 8485–8499. [Google Scholar] [CrossRef]
- Li, B.; Cao, J.; Guan, L.; Mazur, M.; Chen, Y.; Wahle, R.A. Estimating spatial non-stationary environmental effects on the distribution of species: A case study from American lobster in the Gulf of Maine. ICES J. Mar. Sci. 2018, 75, 1473–1482. [Google Scholar] [CrossRef]
- Liu, X.X.; Gao, C.X.; Zhao, J.; Tian, S.Q.; Ye, S.; Ma, J. Modeling and comparison of count data containing zero values: A case study of Setipinna taty in the south inshore of Zhejiang, China. Environ. Sci. Pollut. Res. 2021, 28, 46827–46837. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, B.; Zhao, J.; Wang, X.; Hodgdon, C.T.; Tian, S.Q. Environmental influences on the spatio-temporal distribution of Coilia nasus in the Yangtze River estuary. J. Appl. Ichthyol. 2020, 36, 317–327. [Google Scholar] [CrossRef]
- Manderson, J.; Palamara, L.; Kohut, J.; Oliver, M. Ocean observatory data are useful for regional habitat modeling of species with different vertical habitat preferences. Mar. Ecol. Prog. Ser. 2011, 438, 1–17. [Google Scholar] [CrossRef]
- Mouton, A.M.; Schneider, M.; Peter, A.; Holzer, G.; Müller, R.; Goethals, P.L.; de Pauw, N. Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland). Ecol. Model. 2008, 215, 122–132. [Google Scholar] [CrossRef]
- Václavík, T.; Meentemeyer, R.K. Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecol. Model. 2009, 220, 3248–3258. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.H.; Chen, Y.; Holland, D.; Grabowski, J. Estimating spatial distribution of American lobster Homarus americanus using habitat variables. Mar. Ecol. Prog. Ser. 2010, 420, 145–156. [Google Scholar] [CrossRef]
- Hua, C.X.; Zhu, Q.C.; Shi, Y.C.; Liu, Y. Comparative analysis of CPUE standardization of Chinese Pacific saury (Cololabis saira) fishery based on GLM and GAM. Acta Oceanol. Sin. 2019, 38, 100–110. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Xu, B.D.; Ji, Y.P.; Zhang, C.L.; Ren, Y.P.; Xue, Y. Comparison of habitat models in quantifying the spatio-temporal distribution of small yellow croaker (Larimichthys polyactis) in Haizhou Bay, China. Estuar. Coast. Shelf Sci. 2021, 261, 107512. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, J.; Tian, S.Q.; Chen, Y.; Zhang, S.Y.; Wang, Z.H.; Zhou, X.J. A comparison between two GAM models in quantifying relationships of environmental variables with fish richness and diversity indices. Aquat. Ecol. 2014, 48, 297–312. [Google Scholar] [CrossRef]
- Dai, L.B.; Hodgdon, C.; Tian, S.Q.; Chen, J.H.; Gao, C.X.; Han, D.Y.; Kindong, R.; Ma, Q.Y.; Wang, X.F. Comparative performance of modelling approaches for predicting fish species richness in the Yangtze River Estuary. Reg. Stud. Mar. Sci. 2020, 35, 101161. [Google Scholar] [CrossRef]
- Piet, G.J. Using external information and GAMs to improve catch-at-age indices for North Sea plaice and sole. ICES J. Mar. Sci. 2002, 59, 624–632. [Google Scholar] [CrossRef]
- Shono, H. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fish. Res. 2008, 93, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Bouska, K.L.; Whitledge, G.W.; Lant, C. Development and evaluation of species distribution models for fourteen native central U.S. fish species. Hydrobiologia 2015, 747, 159–176. [Google Scholar] [CrossRef]
- Tian, S.Q.; Chen, X.J.; Chen, Y.; Xu, L.X.; Dai, X.J. Standardizing CPUE of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Chin. J. Oceanol. Limnol. 2009, 27, 729–739. [Google Scholar] [CrossRef]
- Li, B.; Cao, J.; Chang, J.H.; Wilson, C.; Chen, Y. Evaluation of effectiveness of fixed-station sampling for monitoring American lobster settlement. N. Am. J. Fish. Manag. 2015, 35, 942–957. [Google Scholar] [CrossRef]
- Tweedie, M.C.K. An index which distinguishes between some important exponential families. In Statistics: Applications and new directions, Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, Calcutta, India, 16–19 December 1984; Indian Statistical Institute: Calcutta, India; pp. 579–604.
- Ma, W.; Qin, S.; Zhao, J. Distribution characteristics and influencing factors of fish resources in the offshore waters south of Zhejiang. Prog. Fish. Sci. 2021, 1–12. [Google Scholar]
- Zhu, W.B.; Zhu, H.C.; Wang, Y.L.; Zhang, Y.Z.; Lu, Z.H.; Cui, G.C. Heterogeneity of fork length-weight relationship for juvenile Engraulis japonius based on linear mixed-effects models. J. Appl. Ecol. 2021, 32, 4532–4538. [Google Scholar]
- Wei, S.; Jiang, W.M. Study on food web of fishes in the Yellow Sea. Oceanol. Limnol. Sin. 1992, 23, 182–192. [Google Scholar]
- Guan, L.S.; Jin, X.S.; Wu, Q.; Shan, X.J. Statistical modelling for exploring diel vertical movements and spatial correlations of marine fish species: A supplementary tool to assess species interactions. ICES J. Mar. Sci. 2019, 76, 1776–1783. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China. National Standard (Recommended) of the People’s Republic of China: Specifications for Oceanographic Survey-Part 6: Marine Biological Survey; Standards Press of China: Beijing, China, 2008. [Google Scholar]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. The Specification for Marine Monitoring-Part 3: Sample collection, Storage and Transportation; China Standards Press: Beijing, China, 2008. [Google Scholar]
- Niu, M.; Jin, X.S.; Li, X.S.; Wang, J. Effects of spatio-temporal and environmental factors on distribution and abundance of wintering anchovy Engraulis japonicus in central and southern Yellow Sea. Chin. J. Oceanol. Limnol. 2014, 32, 565–575. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R.S. S classes and methods for spatial data: The sp package. R News 2005, 5, 9–13. [Google Scholar]
- Fujita, T.; Yamamoto, M.; Kono, N.; Tomiyama, T.; Sugimatsu, K.; Yoneda, M. Temporal variations in hatch date and early survival of Japanese anchovy (Engraulis japonicus) in response to environmental factors in the central Seto Inland Sea, Japan. Fish. Oceanogr. 2021, 30, 527–541. [Google Scholar] [CrossRef]
- Meng, W.Z.; Gong, Y.H.; Wang, X.F.; Tong, J.F.; Han, D.Y.; Chen, J.H.; Wu, J.H. Influence of spatial scale selection of environmental factors on the prediction of distribution of Coilia nasus in Changjiang River Estuary. Fishes 2021, 6, 48. [Google Scholar] [CrossRef]
- Baayen, H.; Vasishth, S.; Kliegl, R.; Bates, D. The cave of shadows: Addressing the human factor with generalized additive mixed models. J. Mem. Lang. 2017, 94, 206–234. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.J.; Song, L.M.; Yuan, H.C.; Song, B.; Ebango Ngando, N. A comparative study on habitat models for adult bigeye tuna in the Indian Ocean based on gridded tuna longline fishery data. Fish. Oceanogr. 2021, 30, 584–607. [Google Scholar] [CrossRef]
- Planque, B.; Bellier, E.; Lazure, P. Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay. Fish. Oceanogr. 2007, 16, 16–30. [Google Scholar] [CrossRef]
- Stow, C.A.; Jolliff, J.; Mcgillicuddy, D.J., Jr.; Doney, S.C.; Allen, J.I.; Friedrichs, M.A.M.; Rose, K.A.; Wallhead, P. Skill assessment for coupled biological/physical models of marine systems. J. Mar. Syst. 2009, 76, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Maunder, M.N.; Punt, A.E. Standardizing catch and effort data: A review of recent approaches. Fish. Res. 2004, 70, 141–159. [Google Scholar] [CrossRef]
- Ma, S.S. Relationship between distribution and hydrological conditions of the wintering anchovy in Yellow Sea and East China Sea. J. Fish. China 1989, 13, 201–206. [Google Scholar]
- Yalcin, E.; Gurbet, R. Environmental influences on the spatio-temporal distribution of European Hake (Merluccius merluccius) in Izmir Bay, Aegean Sea. Turk. J. Fish. Aquat. Sci. 2016, 16, 1–14. [Google Scholar] [CrossRef]
- Guan, W.J.; Chen, X.J.; Gao, F.; Li, G. Environmental effects on fishing efficiency of Scomber japonicus for Chinese large lighting purse seine fishery in the Yellow and East China Seas. J. Fish. Sci. China 2009, 16, 949–958. [Google Scholar]
- Selleslagh, J.; Amara, R. Environmental factors structuring fish composition and assemblages in a small macrotidal estuary (eastern English Channel). Estuar. Coast. Shelf Sci. 2008, 79, 507–517. [Google Scholar] [CrossRef]
- Niu, M.X.; Wang, J. Variation in the distribution of wintering anchovy Engraulis japonicus and its relationship with water temperature in the central and southern Yellow Sea. Chin. J. Oceanol. Limnol. 2017, 35, 1134–1143. [Google Scholar] [CrossRef]
- Niu, M.X.; Wang, J.; Wu, Q.; Sun, J.Q. The relationship of stock density distribution of wintering anchovy (Engraulis japonicus) and environmental factors based on remote sensing in central and southern Yellow Sea. Prog. Fish. Sci. 2020, 41, 11–20. [Google Scholar]
- Lu, Y.; Yu, J.; Lin, Z.J.; Chen, P.M. Environmental influence on the spatiotemporal variability of spawning grounds in the western Guangdong waters, South China Sea. J. Mar. Sci. Eng. 2020, 8, 607. [Google Scholar] [CrossRef]
- Liu, X.X.; Wang, J.; Zhang, Y.L.; Yu, H.M.; Xu, B.D.; Zhang, C.L.; Ren, Y.P.; Xue, Y. Comparison between two GAMs in quantifying the spatial distribution of Hexagrammos otakii in Haizhou Bay, China. Fish. Res. 2019, 218, 209–217. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Cheng, J.H.; Xu, H.X.; Shen, X.Q.; Yu, G.P.; Zheng, Y.J. Fishery Resources and their Sustainable Utilization in the East China Sea; Fudan University: Shanghai, China, 2007. [Google Scholar]
- Liu, X.Q.; Hou, Y.J.; Yin, B.S. Dynamic process of certical circulation and temperature-salinity structures in coastal area of East China Sea II the structure of the water temperature and salinity. Oceanol. Limnol. Sin. 2004, 35, 497–506. [Google Scholar]
- Zhu, W.B.; Zhu, H.C.; Zhang, Y.Z.; Wang, J.; Jiang, R.J.; Lu, Z.H.; Cui, G.C.; Dai, Q. Quantitative distribution of juvenile Engraulis japonicus and the relationship with environmental factors along the Zhejiang coast. J. Fish. Sci. China 2021, 28, 1175–1183. [Google Scholar]
Factor | T | S | Depth | Dis | Lat | Lon |
---|---|---|---|---|---|---|
VIF | 1.08 | 1.56 | 3.76 | 4.14 | 31.8 | 38.8 |
1.08 | 1.56 | 2.78 | 2.18 | 1.17 | - |
Model | Optimal Model | Degrees of Freedom | p | AIC | Deviance Explained | |
---|---|---|---|---|---|---|
Two-stage GAM | GAM 1 | latitude | 1.001 | 0.014 * | 375.90 | 19.9% |
temperature | 2.076 | 0.009 ** | ||||
salinity | 1.108 | 0.141 | ||||
depth | 2.749 | 0.074 | ||||
month | - | - | ||||
GAM 2 | latitude | 1.000 | 0.185 | 445.35 | 53.8% | |
temperature | 7.890 | 0.037 * | ||||
salinity | 6.282 | 0.136 | ||||
distance | 5.646 | 0.229 | ||||
month | - | - | ||||
Tweedie-GAM | temperature | 1.480 | 0.112 | 19,870.02 | 46.7% | |
salinity | 7.903 | <0.001 *** | ||||
month | - | - | ||||
GAMM | latitude | 7.997 | <0.001 *** | 202,817.3 | 73.2% | |
temperature | 8.978 | <0.001 *** | ||||
salinity | 8.998 | <0.001 *** | ||||
distance | 8.997 | <0.001 *** | ||||
depth | 8.997 | <0.001 *** | ||||
month | - | - | ||||
Ad hoc-GAM | Ad + 1 GAM | latitude | 1.000 | 0.009 ** | 1641.45 | 30% |
temperature | 2.098 | 0.030 * | ||||
salinity | 7.293 | 0.104 | ||||
month | - | - | ||||
Ad hoc-mean GAM | temperature | 3.621 | 0.045 * | 1120.89 | 29.6% | |
salinity | 7.452 | 0.057 | ||||
latitude | 1.000 | 0.033 * | ||||
depth | 1.000 | 0.092 | ||||
month | - | - |
Model | RMSE | MAE | R2 |
---|---|---|---|
Two-stage GAM | 1324 | 274 | 0.18 |
Tweedie-GAM | 1725 | 389 | 0.14 |
GAMM | 1697 | 361 | 0.10 |
Ad + 1 GAM | 1709 | 381 | 0.24 |
Ad hoc-mean GAM | 1816 | 467 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Gao, C.; Tang, W.; Qin, S.; Ma, J.; Zhao, J. Relationship between Engraulis japonicus Resources and Environmental Factors Based on Multi-Model Comparison in Offshore Waters of Southern Zhejiang, China. J. Mar. Sci. Eng. 2022, 10, 657. https://doi.org/10.3390/jmse10050657
Ma W, Gao C, Tang W, Qin S, Ma J, Zhao J. Relationship between Engraulis japonicus Resources and Environmental Factors Based on Multi-Model Comparison in Offshore Waters of Southern Zhejiang, China. Journal of Marine Science and Engineering. 2022; 10(5):657. https://doi.org/10.3390/jmse10050657
Chicago/Turabian StyleMa, Wen, Chunxia Gao, Wei Tang, Song Qin, Jin Ma, and Jing Zhao. 2022. "Relationship between Engraulis japonicus Resources and Environmental Factors Based on Multi-Model Comparison in Offshore Waters of Southern Zhejiang, China" Journal of Marine Science and Engineering 10, no. 5: 657. https://doi.org/10.3390/jmse10050657
APA StyleMa, W., Gao, C., Tang, W., Qin, S., Ma, J., & Zhao, J. (2022). Relationship between Engraulis japonicus Resources and Environmental Factors Based on Multi-Model Comparison in Offshore Waters of Southern Zhejiang, China. Journal of Marine Science and Engineering, 10(5), 657. https://doi.org/10.3390/jmse10050657