Research on Navigation Safety Evaluation of Coastal Waters Based on Dynamic Irregular Grid
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Irregular Grid Division Method
3.1.1. CDT–Alpha-Shape Boundary Extraction of Waterway
3.1.2. CDT–Voronoi for Boundary Extraction of Ship Navigation Track
3.1.3. Construction of Ocean Data Fusion Grid
3.2. Safety Evaluation Analysis Method
3.2.1. Safety Risk Evaluation Index
3.2.2. Safety Risk Assessment Model
3.2.3. Safety Risk Assessment Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, S.; Zhang, J.; Blanco-Davis, E.; Yang, Z.; Yan, X. Maritime accident prevention strategy formulation from a human factor perspective using Bayesian Networks and TOPSIS. Ocean Eng. 2020, 210, 107544. [Google Scholar] [CrossRef]
- Zhang, G.; Thai, V.V. Expert elicitation and Bayesian Network modeling for shipping accidents: A literature review. Saf. Sci. 2016, 87, 53–62. [Google Scholar] [CrossRef]
- Chou, C.-C.; Wang, C.-N.; Hsu, H.-P. A novel quantitative and qualitative model for forecasting the navigational risks of Maritime Autonomous Surface Ships. Ocean Eng. 2022, 248, 110852. [Google Scholar] [CrossRef]
- Celik, M.; Lavasani, S.M.; Wang, J. A risk-based modelling approach to enhance shipping accident investigation. Saf. Sci. 2010, 48, 18–27. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Wu, Z. Assessment on major elements influencing the safety of navigation in harbor area. J. Dalian Marit. Univ. 2006, 32, 48–50. [Google Scholar]
- Tzannatos, E.; Kokotos, D. Analysis of accidents in Greek shipping during the pre- and post-ISM period. Mar. Policy 2009, 33, 679–684. [Google Scholar] [CrossRef]
- Goerlandt, F.; Montewka, J.; Kuzmin, V.; Kujala, P. A risk-informed ship collision alert system: Framework and application. Saf. Sci. 2015, 77, 182–204. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Jia, S.; Meng, Q.; Tan, K.C. Tugboat scheduling for container ports. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102071. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Q.; Dong, S.; Soares, C.G. Effectiveness assessment of ship navigation safety countermeasures using fuzzy cognitive maps. Saf. Sci. 2019, 117, 352–364. [Google Scholar] [CrossRef]
- Goerlandt, F.; Kujala, P. On the reliability and validity of ship–ship collision risk analysis in light of different perspectives on risk. Saf. Sci. 2014, 62, 348–365. [Google Scholar] [CrossRef]
- Ozturk, U.; Cicek, K. Individual collision risk assessment in ship navigation: A systematic literature review. Ocean Eng. 2019, 180, 130–143. [Google Scholar] [CrossRef]
- Hu, S.; Li, F.; Xi, Y.; Wu, J. Novel simulation on coupling mechanism of risk formation segments for marine traffic system. J. Basic Sci. Eng. 2015, 23, 409–419. [Google Scholar]
- Beibei, M.; Quandang, M.; Fucai, J.; Yanmin, X. Risk assessment of the harbor approach channels based on the entropy weight and fuzzy evaluation model. J. Saf. Environ. 2017, 17, 2125–2128. [Google Scholar]
- Mingming, J.; Xilong, X.; Liwen, H.; Lu, L. Safety evalution model for the waterway navigation based on the centralized statistical model-grey fuzzy. J. Saf. Environ. 2017, 17, 41–45. [Google Scholar]
- Di, Z.; Jinfen, Z.; Xinping, Y. Navigational risk assessment for inland and waterway transportation system based on fuzzy rule base and evidential reasoning. Navig. China 2014, 37, 71–75. [Google Scholar]
- de Oliveira Barros, E.R.; Oliveira de Andrade, M.; de Souza Júnior, F.L. Time-space modeling of irregular occupations around Brazilian highways, based on static grids: Case study of BR-408. Land Use Policy 2022, 114, 105971. [Google Scholar] [CrossRef]
- Gaggero, T.; Bucciarelli, F.; Besio, G.; Mazzino, A.; Villa, D. A method to assess safety and comfort for different ships types in a region of interest. Ocean Eng. 2022, 250, 110995. [Google Scholar] [CrossRef]
- Bousquin, J. Discrete Global Grid Systems as scalable geospatial frameworks for characterizing coastal environments. Environ. Model. Softw. Environ. Data News 2021, 146, 1–14. [Google Scholar] [CrossRef]
- Liang, Z.; Xi, G.; Lihong, Z.; Yi, H.; Dan, Y.; Qing, Z. A Dynamic Grid Algorithm Based Urban Land Gradation Method Considering Obstacles. China Land Sci. 2020, 34, 27–36. [Google Scholar]
- Tang, X.; Fan, Y.; Cai, C. Maritime traffic environment risk analysis based on geographical distribution. In Proceedings of the International Conference on Risk Analysis & Crisis Response, Shanghai, China, 25–26 September 2007. [Google Scholar]
- Tang, X.; Fan, Y.; Cai, C. Marine traffic risk analysis and prediction based on geographic grid. J. Basic Sci. Eng. 2008, 16, 425–435. [Google Scholar]
- Hu, Z.; Lyu, X.; Wang, S. Maritime grid risk early-warning model based on AHP and BPNN. J. Dalian Marit. Univ. 2014, 35, 20–25. [Google Scholar]
- Zhang, Z. The Research of Navigation Safety Risk Analysis Model and Realized on Huizhou Port. Master’s Thesis, Dalian Maritime University, Dalian, China, 2017. [Google Scholar]
- Zhong, Q. Research on the Safety Risk Assessment and Mesher of Water Traffic in Dongying Harbor Area. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2017. [Google Scholar]
- Specht, M.; Stateczny, A.; Specht, C.; Widźgowski, S.; Lewicka, O.; Wiśniewska, M. Concept of an Innovative Autonomous Unmanned System for Bathymetric Monitoring of Shallow Waterbodies (INNOBAT System). Energies 2021, 14, 5370. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.; Lampropoulou, P.; Fakiris, E.; Sardelianos, D.; Papatheodorou, G. Synergistic Use of UAV and USV Data and Petrographic Analyses for the Investigation of Beachrock Formations: A Case Study from Syros Island, Aegean Sea, Greece. Minerals 2018, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- Giordano, F.; Mattei, G.; Parente, C.; Peluso, F.; Santamaria, R. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters. Sensors 2015, 16, 41. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Dong, F.; Wan, Y.; Zhao, J.; Li, S.; Xi, F.; Chen, K.; Zhang, L.; Chen, D. Analysis and research on several global subdivision grids. Acta Geod. Et Cartogr. Sin. 2016, 45, 48–55. [Google Scholar]
- Diao, F.; Shanshan, L.; Jianchen, S.; Jinhui, Z.; Yan, W.; Aoming, W. Comparing and analyzing several global seafloor topography models. Hydrogr. Surv. Charting 2021, 41, 20–27. [Google Scholar]
- Wei, Y.; Tinghua, A. The extraction of road boundary from Crowdsourcing trajectory using constrained Delaunay triangulation. Acta Geod. Et Gartograph. Sin. 2017, 46, 237–245. [Google Scholar]
- Liu, Q.; Tang, J.; Deng, M.; Shi, Y. An Iterative Detection and Removal Method for Detecting Spatial Clusters of Different Densities. Trans. GIS 2015, 19, 82–106. [Google Scholar] [CrossRef]
- Widyaningrum, E.; Peters, R.Y.; Lindenbergh, R.C. Building outline extraction from ALS point clouds using medial axis transform descriptors. Pattern Recognit. 2020, 106, 107447. [Google Scholar] [CrossRef]
- Xin, Q.; Qin, L.; Fan, J.; Bi, J. A Method for Channel Data Organization and 3D Visualization Based on WebGL. J. Geomat. 2022, 47, 81–85. [Google Scholar]
- Park, J.; Jeong, J.; Park, Y. Ship Trajectory Prediction Based on Bi-LSTM Using Spectral-Clustered AIS Data. J. Mar. Sci. Eng. 2021, 9, 1037. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Meng, J.; Zhao, L.; Wen, J.; Wang, G. Extraction method of marine lane boundary from exploiting trajectory big data. J. Comput. Appl. 2019, 39, 105–112. [Google Scholar]
Data Category | Data Items | Year | Resolution/Scale | Data Organization Mode |
---|---|---|---|---|
seabed topography | Gebco global water depth data Bathymetric data | 2020 | 15″ 1:1000 | NetCDF formatted table |
electronic chart | The channel anchorage Restricted area AIDS to navigation | 2020 | 1:1000 | shp file format |
ship traffic flow | AIS data | 2020 | / | Format Table |
marine hydrometeorology | Data of wind, wave, and trend | 2020 | 0.04° 0.03° 0.03° | NC file format |
Scale Bar | Error Limits in Points (mm) | Point Field Distance Limit (m) | Reference Range for a (m) |
---|---|---|---|
1:500 | 1.5~2.0 | 7.5~10.0 | 7.5~20.0 |
1:1000 | 1.5 | 15.0 | 15.0~30.0 |
1:2000 | 1.5 | 30.0 | 30.0~60.0 |
1:5000 | 1.0 | 50.0 | 50.0~100.0 |
1:10,000 | 1.0 | 100.0 | 100.0~200.0 |
Evaluation Area | Evaluation Factors | Evaluation Parameters | Evaluation Indicators |
---|---|---|---|
Navigation safety assessment in coastal waters C | Channel natural conditions c1 | Seafloor topography c11 | Terrain risk assessment e11 |
Anchor ground c12 | Anchorage risk assessment e12 | ||
Channel c13 | Waterway risk assessment e13 | ||
Restricted area c14 | Restricted area risk assessment e14 | ||
Water depth c15 | Water depth risk assessment e15 | ||
Traffic conditions c2 | Traffic flow c21 | Traffic flow risk assessment e21 | |
Ship density c22 | Vessel density risk assessment e22 | ||
Ship speed c23 | Vessel speed risk assessment e23 | ||
Navigation aids c24 | Risk assessment of navigation aids e24 | ||
Hydrometeorological conditions c3 | Wind c31 | Wind risk assessment e31 | |
Wave c32 | Evaluation of wave hazard e32 | ||
Trend c33 | Trend risk assessment e33 | ||
Tidal c34 | Tidal hazard evaluation e34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, J.; Gao, M.; Zhang, W.; Zhang, X.; Bao, K.; Xin, Q. Research on Navigation Safety Evaluation of Coastal Waters Based on Dynamic Irregular Grid. J. Mar. Sci. Eng. 2022, 10, 733. https://doi.org/10.3390/jmse10060733
Bi J, Gao M, Zhang W, Zhang X, Bao K, Xin Q. Research on Navigation Safety Evaluation of Coastal Waters Based on Dynamic Irregular Grid. Journal of Marine Science and Engineering. 2022; 10(6):733. https://doi.org/10.3390/jmse10060733
Chicago/Turabian StyleBi, Jinqiang, Miao Gao, Wenjia Zhang, Xuefeng Zhang, Kexin Bao, and Quanbo Xin. 2022. "Research on Navigation Safety Evaluation of Coastal Waters Based on Dynamic Irregular Grid" Journal of Marine Science and Engineering 10, no. 6: 733. https://doi.org/10.3390/jmse10060733
APA StyleBi, J., Gao, M., Zhang, W., Zhang, X., Bao, K., & Xin, Q. (2022). Research on Navigation Safety Evaluation of Coastal Waters Based on Dynamic Irregular Grid. Journal of Marine Science and Engineering, 10(6), 733. https://doi.org/10.3390/jmse10060733