Dynamics and Causes of Sea Level Rise in the Coastal Region of Southwest Bangladesh at Global, Regional, and Local Levels
Abstract
:1. Introduction
Relative Sea Level Rise
2. Study Area and Methodology
2.1. Study Area
2.2. Methodology
2.3. Satellite Imagery Retrieval
2.4. SLR Change Verification and Land Subsidence Projection Using CMIP5 Model
3. Results
Station Name | Kalaroa | Benarpota | Protapnagar | Basantapur | Kaikhali | Tala Magura | Chandkhali | Elarchari | Kobadak Forest | Shakra | Legend |
---|---|---|---|---|---|---|---|---|---|---|---|
Trend (mm/yr) | 40.41 | 41.749 | 0.127 | 0.0898 | 7.2704 | 11.528 | −3.0327 | 29.343 | −13.59 | −4.9207 | Positive sea level change |
Correlation | 0.7241 | 0.665 | 0 | 0 | 0.2149 | 0.148 | 0.0644 | 0.578 | 0.533 | 0.081 | No significant sea level change (<1 mm/yr) |
3.1. Comparison with the CMIP5 Model
3.2. Comparison with tide Gauge, Satellite Altimetry, and RCP, CIMP5
4. Discussion
4.1. Sea Level Rise
4.2. Comparison between Global, Regional, and Local Sea Level Changes and Impacts
Climate-Related Driver | Physical/Chemical Effects | Trends | Projections | Progress | Scale of Effect |
---|---|---|---|---|---|
Sea level: global and local southwestern coastal region, Bangladesh | Submergence, flood damage, erosion; saltwater intrusion; rising water tables/impeded drainage; wetland loss (and change) | Global mean sea level very likely to increase and SLR in Bay of Bengal higher than global | Global mean sea level likely increases and SLR in Bay of Bengal will much increase | Improved confidence in contributions to observed sea level. More information on regional and local sea level rise such as the southwestern coastal region in Bangladesh | Global, much effect regional and local |
Storms: tropical cyclones (TCs), extratropical cyclones (ETCs) in SWCRB | Storm surges and storm waves, coastal flooding, erosion; saltwater intrusion; rising water tables/impeded drainage; wetland loss and change. Coastal infrastructure damage and flood defense failure | TCs high confidence in trends in frequency, ETCs likely poleward movement of circulation features but low confidence in intensity changes | TCs likely increase to no change in frequency; likely increase in the most intense TCs. ETCs high confidence that reduction in ETCs will be small globally and in Bangladesh. Low confidence in changes in intensity | Lowering of confidence of observed trends in TCs and ETCs since AR4. More basin-specific information on storm track changes | Global, much effect regional and local |
Winds | Wind waves, storm surges, coastal currents, land coastal infrastructure damage | Low confidence in trends in mean and extreme wind speeds | High confidence in projected mean wind speeds. Likely increase in TC extreme wind speeds such as Amphan in India, Bangladesh | Improved atmospheric observations and simulations for wind | Global and Local |
Waves | Coastal erosion, overtopping, and coastal flooding | Likely positive trends in Hs in high latitudes | Low confidence for projections overall but medium confidence for Southern Ocean increases in Hs | Large increase in number of wave projection studies since AR4 | Global and Local |
Extreme sea levels | Coastal flooding erosion, saltwater intrusion | High confidence of increase due to global, regional, and local mean sea level rise | High confidence of increase due to global, regional, and local mean sea level rise, low confidence of changes due to storm changes | Local subsidence is an important indicator of regional sea level rise in many locations | Regional and local |
Sea surface temperature (SST) | Changes to stratification and circulation; reduced incidence of sea ice at higher latitudes; increased coral bleaching and mortality, poleward species migration; increased algal blooms | High confidence that coastal SST increase is higher than global SST increase | High confidence that coastal SSTs will increase with projected temperature increase | Emerging information on coastal changes in SSTs | Global, regional, and local |
Freshwater input | Altered flood risk in coastal lowlands; altered water quality / salinity; altered fluvial sediment supply; altered circulation and nutrient supply | High confidence in a net declining trend in annual volume of freshwater input in study area | Medium confidence for general increase in high latitudes and wet tropics and decrease in other tropical regions | Emerging information on freshwater input | Regional and local |
Ocean acidity | Increased CO2; increased seawater pH and carbonation concentration (or “ocean acidification”) | High confidence of overall increase, with high local and regional variability | High confidence of increase at unprecedented rates but with local and regional variability | Coastal ocean acidification increase | Global, regional, and local |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, in press.
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Warrick, R.A.; Le Provost, C.; Meier, M.F.; Oerlemans, J.; Woodworth, P.L.; Alley, R.N.; Bindschadler, R.A.; Bentley, C.R.; Braithwaite, R.J.; Wolde, J.R.D.; et al. Changes in sea level. In Climate Change 1995: The Science of Climate Change: Contribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1996; pp. 359–406. [Google Scholar]
- Domingues, R.; Goni, G.; Baringer, M.; Volkov, D. What caused the accelerated sea level changes along the US East Coast during 2010–2015? Geophys. Res. Lett. 2018, 45, 13–367. [Google Scholar] [CrossRef]
- NASA/JPL. Rise in Global Sea Level from 1880 to 2013. In Jet Propulsoin Laboratory. California Institute of Technology (2017). Available online: https://www.jpl.nasa.gov/edu/teach/activity/graphing-sea-level-trends/ (accessed on 23 February 2022).
- Stocker, T.F. Close Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hopkins, T.S.; Bailly, D.; Elmgren, R.; Glegg, G.; Sandberg, A.; Støttrup, J.G. A systems approach framework for the transition to sustainable development: Potential value based on coastal experiments. Ecol. Soc. 2012, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tamisiea, M.E.; Mitrovica, J.X. The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography 2011, 24, 24–39. [Google Scholar] [CrossRef]
- Palmer, M.; Howard, T.; Tinker, J.; Lowe, J.; Bricheno, L.; Calvert, D.; Edwards, T.; Gregory, J.; Harris, G.; Krijnen, J.; et al. UKCP18 Marine Report 2018. Available online: www.metoffice.gov.uk (accessed on 21 February 2022).
- Howard, T.; Palmer, M.D.; Bricheno, L.M. Contributions to 21st century projections of extreme sea-level change around the UK. Environ. Res. Commun. 2019, 1, 095002. [Google Scholar] [CrossRef]
- Palmer, M.D.; Gregory, J.M.; Bagge, M.; Calvert, D.; Hagedoorn, J.M.; Howard, T.; Klemann, V.; Lowe, J.A.; Roberts, C.D.; Slangen, A.B.A.; et al. Exploring the drivers of global and local sea-level change over the 21st century and beyond. Earth’s Future 2020, 8, e2019EF001413. [Google Scholar] [CrossRef]
- Roy, K.; Peltier, W.R. Glacial isostatic adjustment, relative sea level history and mantle viscosity: Reconciling relative sea level model predictions for the US East coast with geological constraints. Geophys. J. Int. 2015, 201, 1156–1181. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Unnikrishnan, A.S. Sea-level rise by 2100. Science 2013, 342, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganachaud, A.; Gupta, A.S.; Brown, J.N.; Evans, K.; Maes, C.; Muir, L.C.; Graham, F.S. Projected changes in the tropical Pacific Ocean of importance to tuna fisheries. Clim. Chang. 2013, 119, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Church, J.A. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and regional sea level rise scenarios for the United States; No. CO-OPS 083; United States Geological Survey: Reston, VA, USA; United States Environmental Protection Agency: Washington, DC, USA; Rutgers University: New Brunswick, NJ, USA, 2017. [Google Scholar]
- Hadley, D. Land use and the coastal zone. Land Use Policy 2009, 26, S198–S203. [Google Scholar] [CrossRef]
- The World Bank. World Development Indicators: Energy Dependency, Efficiency and Carbon Dioxide Emissions, The World Bank, Washington DC (2014). Available online: http://wdi.worldbank.org/table/3.8# (accessed on 12 March 2021).
- The World Bank Group. Warming Climate to Hit Bangladesh Hard with Sea Level Rise, More Floods and Cyclones, Washington, DC. 2013. Available online: https://www.worldbank.org/en/news/press-release/2013/06/19/warming-climate-to-hit-bangladesh-hard-with-sea-level-rise-more-floods-and-cyclones-world-bank-report-says, (accessed on 1 March 2022).
- Litchfield, W.A. Climate Change Induced Extreme Weather Events & Sea Level Rise in Bangladesh leading to Migration and Conflict (2010). Available online: http://mandalaprojects.com/ice/ice-cases/bangladesh.htm (accessed on 7 May 2020).
- Holifield, R.; Porter, M.; Walker, G. Spaces of Environmental Justice: Frameworks for Critical Engagement. Antipode 2009, 41, 591–612. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Smith, K. We are seven billion. Nat. Clim. Chang. 2011, 1, 331–335. [Google Scholar] [CrossRef]
- United Nations University—Institute for Environment and Human Security (UNU-EHS), World Risk Report (2015). Available online: www.worldriskreport.org/ (accessed on 12 March 2020).
- Powers, A. Sea-level rise and its impact on vulnerable states: Four examples. La. L. Rev. 2012, 73, 151. [Google Scholar]
- Khanom, T. Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean Coast. Manag. 2016, 130, 205–212. [Google Scholar] [CrossRef]
- Biswas, S.; Daly, P. ‘Cyclone Not Above Politics’: East Pakistan, disaster politics, and the 1970 Bhola Cyclone. Mod. Asian Stud. 2021, 55, 1382–1410. [Google Scholar] [CrossRef]
- Haque, A.; Jahan, S. Regional impact of cyclone sidr in Bangladesh: A multi-sector analysis. Int. J. Disaster Risk Sci. 2016, 7, 312–327. [Google Scholar] [CrossRef] [Green Version]
- Khatun, M.R.; Gossami, G.C.; Akter, S.; Paul, G.C.; Barman, M.C. Impact of the tropical cyclone AILA along the coast of Bangladesh. Int. J. Sci. Eng. Res. 2017, 8, 1592–1599. [Google Scholar]
- Parvin, G.A.; Shimi, A.C.; Shaw, R.; Biswas, C. Flood in a changing climate: The impact on livelihood and how the rural poor cope in Bangladesh. Climate 2016, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Ash, K.; Abedin, J.; Paul, B.K.; Southworth, J. A quantitative framework for analyzing spatial dynamics of flood events: A case study of super cyclone amphan. Remote Sens. 2020, 12, 3454. [Google Scholar] [CrossRef]
- Jisan, M.A.; Bao, S.; Pietrafesa, L.J. Ensemble projection of the sea level rise impact on storm surge and inundation at the coast of Bangladesh. Nat. Hazards Earth Syst. Sci. 2018, 18, 351–364. [Google Scholar] [CrossRef] [Green Version]
- CGTN; Gupta, A. Rising Sea Level Threatens 300 Million People, Asia Worst Affected (2019). Available online: https://news.cgtn.com/news/2019-10-30/Rising-sea-level-threatens-300-million-people-Asia-worst-affected-LdaNbT1iec/index.html (accessed on 21 February 2021).
- Ashrafuzzaman, M.; Artemi, C.; Santos, F.D.; Schmidt, L. Current and Future Salinity Intrusion in the South-Western Coastal Region of Bangladesh. Span. J. Soil Sci. 2022, 1. [Google Scholar] [CrossRef]
- Jabir, A.A.; Hasan, G.J.; Anam, M.M. Correlation between temperature, sea level rise and land loss: An assessment along the Sundarbans coast. J. King Saud Univ.-Eng. Sci. 2021; in press. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Paul, B.K.; Rashid, H. Climatic hazards in coastal Bangladesh, non-structural and structural solutions. Sci. Direct 2016, 1, 53–182. [Google Scholar]
- Cazenave, A.; Bonnefond, P.; Mercier, F.; Dominh, K.; Toumazou, V. Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Glob. Planet. Chang. 2002, 34, 59–86. [Google Scholar] [CrossRef]
- Birkett, C.M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. Ocean. 1995, 100, 25179–25204. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Shum, C.K.; Braun, A.; Mitrovica, J.X. Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Benveniste, J. Radar altimetry: Past, present and future. In Coastal Altimetry; Vignudelli, S., Kostianoy, G.A., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–17. [Google Scholar]
- Heiskanen, W.A.; Moritz, H. Physical Geodesy; W.H. Freeman and Company: San Francisco, CA, USA; London, UK, 1967. [Google Scholar]
- Ablain, M.; Cazenave, A.; Larnicol, G.; Balmaseda, M.; Cipollini, P.; Faugère, Y.; Fernandes, M.J.; Henry, O.; Johannessen, J.A.; Knudsen, P.; et al. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci. 2015, 11, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.L.; Cazenave, A. (Eds.) Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Meyssignac, B.; Cazenave, A. Sea level: A review of present-day and recent-past changes and variability. J. Geodyn. 2012, 58, 96–109. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Mimura, N. Sea-level rise caused by climate change and its implications for society. Proc. Jpn. Acad. Ser. B 2013, 89, 281–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grall, C.; Steckler, M.S.; Pickering, J.L.; Goodbred, S.; Sincavage, R.; Paola, C.; Akhter, S.H.; Spiess, V. A base-level stratigraphic approach to determining Holocene subsidence of the Ganges–Meghna–Brahmaputra Delta plain. Earth Planet. Sci. Lett. 2018, 499, 23–36. [Google Scholar] [CrossRef]
- Gilman, E.; Ellison, J.C.; Jungblut, V.; Van Lavieren, H.; Wilson, L.; Areki, F.; Brighouse, G.; Bungitak, J.; Dus, E.; Henry, M.; et al. Adapting to Pacific Island mangrove responses to sea level rise and climate change. Clim. Res. 2006, 32, 161–176. [Google Scholar] [CrossRef]
- Haslett, S. Coastal Systems; Routledge: Abingdon-on-Thames, UK, 2008. [Google Scholar]
- Hossain, M.; Khan, M.; Hossain, S.; Chowdhury, K.R.; Abdullah, R. Synthesis of the tectonic and structural elements of the Bengal Basin and its surroundings. In Tectonics and Structural Geology: Indian Context; Springer: Cham, Switzerland, 2019; pp. 135–218. [Google Scholar]
- Sibuet, J.C.; Klingelhoefer, F.; Huang, Y.P.; Yeh, Y.C.; Rangin, C.; Lee, C.S.; Hsu, S.K. Thinned continental crust intruded by volcanics beneath the northern Bay of Bengal. Mar. Pet. Geol. 2016, 77, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Najman, Y.; Bracciali, L.; Parrish, R.R.; Chisty, E.; Copley, A. Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau. Earth Planet. Sci. Lett. 2016, 433, 1–9. [Google Scholar] [CrossRef]
- Becker, M.; Papa, F.; Karpytchev, M.; Delebecque, C.; Krien, Y.; Khan, J.U.; Ballu, V.; Durand, F.; Le Cozannet, G.; Islam, A.S.; et al. Water level changes, subsidence, and sea level rise in the Ganges–Brahmaputra–Meghna delta. Proc. Natl. Acad. Sci. USA 2020, 117, 1867–1876. [Google Scholar] [CrossRef]
- Jones, M.M.; Sageman, B.B.; Oakes, R.L.; Parker, A.L.; Leckie, R.M.; Bralower, T.J.; Sepúlveda, J.; Fortiz, V. Astronomical pacing of relative sea level during Oceanic Anoxic Event 2: Preliminary studies of the expanded SH# 1 Core, Utah, USA. Bulletin 2019, 131, 1702–1722. [Google Scholar]
- Bralower, T.J.; Bice, D. NASA, Earth in the Future, Absolute Versus Relative Sea Level Change. Available online: https://www.e-education.psu.edu/earth103/node/732 (accessed on 17 December 2021).
- Disappearing World: Global Warming Claims Tropical Island. The Independent, 24 December 2006.
- Lohachara Rises from Waters Again. The Times of India, 11 August 2011.
- Bay of Bengal Physical Geography Earth Science. Available online: www.scribd.com›document›487301871 (accessed on 22 November 2021).
- Bay of Bengal. Available online: https://www.worldatlas.com/aatlas/infopage/baybengal.htm (accessed on 9 December 2021).
- Available online: https://en.banglapedia.org/index.php/Bay_of_Bengal (accessed on 17 December 2021).
- Masood, M.; Yeh, P.F.; Hanasaki, N.; Takeuchi, K. Model study of the impacts of future climate change on the hydrology of Ganges–Brahmaputra–Meghna basin. Hydrol. Earth Syst. Sci. 2015, 19, 747–770. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.findlatitudeandlongitude.com/l/The+bay+of+bengal/2139863/ (accessed on 11 May 2022).
- Reitz, M.D.; Pickering, J.L.; Goodbred, S.L.; Paola, C.; Steckler, M.S.; Seeber, L.; Akhter, S.H. Effects of tectonic deformation and sea level on river path selection: Theory and application to the Ganges-Brahmaputra-Meghna River Delta. J. Geophys. Res. Earth Surf. 2015, 120, 671–689. [Google Scholar] [CrossRef]
- Goodbred, S.L., Jr.; Kuehl, S.A. Holocene and modern sediment budgets for the Ganges-Brahmaputra river system: Evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters. Geology 1999, 27, 559–562. [Google Scholar] [CrossRef]
- Najman, Y.; Bickle, M.; BouDagher-Fadel, M.; Carter, A.; Garzanti, E.; Paul, M.; Wijbrans, J.; Willett, E.; Oliver, G.; Parrish, R.; et al. The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh. Earth Planet. Sci. Lett. 2008, 273, 1–14. [Google Scholar] [CrossRef]
- Kuehl, S.A.; Allison, M.A.; Goodbred, S.L.; Kudrass, H.; Giosan, L.; Bhattacharya, J.P. The Ganges-Brahmaputra Delta. Spec. Publ. -SEPM 2005, 83, 413. [Google Scholar]
- Glazman, R.E.; Greysukh, A.; Zlotnicki, V. Evaluating models of sea state bias in satellite altimetry. J. Geophys. Res. Ocean. 1994, 99, 12581–12591. [Google Scholar] [CrossRef]
- Woodworth, P.L. Differences between mean tide level and mean sea level. J. Geod. 2017, 91, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Haigh, I.; Nicholls, R.; Wells, N. Mean sea level trends around the English Channel over the 20th century and their wider context. Cont. Shelf Res. 2009, 29, 2083–2098. [Google Scholar] [CrossRef]
- Bitharis, S.; Ampatzidis, D.; Pikridas, C.; Fotiou, A.; Rossikopoulos, D.; Schuh, H. The role of GNSS vertical velocities to correct estimates of sea level rise from tide gauge measurements in Greece. Mar. Geod. 2017, 40, 297–314. [Google Scholar] [CrossRef]
- Shirzaei, M.; Freymueller, J.; Törnqvist, T.E.; Galloway, D.L.; Dura, T.; Minderhoud, P.S. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2021, 2, 40–58. [Google Scholar] [CrossRef]
- Awange, J.; Michael, K.; Richard, A. Assessing Climate Change Impacts on Water Resources in the Ganges-Brahmaputra-Meghna River Basin. Ph.D. Thesis, Curtin University, Bentley, Australia, 2016. [Google Scholar]
- NOAA. Center for Operational Oceanographic Products and Services. (n.d.) Sea Level Trends 2019. Available online: https://tidesandcurrents.noaa.gov/sltrends/ (accessed on 3 April 2021).
- Laboratory for Satellite Altimetry. Bay of Bengal Mean Sea Level Seasonal Signals Retained. Regional Sea Level Time Series (2020). Available online: https://www.star.nesdis.noaa.gov/socd/lsa/SeaLevelRise/LSA_SLR_timeseries_regional.php (accessed on 18 December 2021).
- Laboratory for Satellite Altimetry. Global oceans (66° S to 66° N) mean sea level seasonal signals retained. Global sea level time series (2020). Available online: https://www.star.nesdis.noaa.gov/socd/lsa/SeaLevelRise/LSA_SLR_timeseries_global.php (accessed on 18 December 2021).
- Laboratory for Satellite Altimetry / Sea Level Rise. 1992–2022. Available online: https://www.star.nesdis.noaa.gov/socd/lsa/SeaLevelRise/LSA_SLR_timeseries.php (accessed on 18 December 2021).
- JPL ECCO server, 2020. Monthly Mean Free Surface Height Anomaly (Ocean-Ice Interface) (m)—ECCO version 4 release 3, Global bi-Decadal Ocean State Estimate. NASA Sea Level Portal. Available online: https://sealevel.nasa.gov/data-analysis-tool/#b=ESRI_World_Imagery&l=ETAN_ECCO_version4_release3(1),OSMCoastlines(1)&vm=2D&ve=-79.00392602586606,-96.78342282789606,218.57647662880544,147.79047060391207&pl=false&pb=false&tr=false&d=2015-11-30&tlr=years (accessed on 18 December 2021).
- NASA; Brennan, P. These Glaciers Melt at Your Fingertips (2019). Available online: https://climate.nasa.gov/vital-signs/ice-sheets/ (accessed on 22 December 2021).
- NASA. Understanding Sea Level. In Sea Level Change: Observations from Space. N.d. Available online: https://sealevel.nasa.gov/understanding-sea-level/regional-sea-level/subsidence (accessed on 22 December 2021).
- Copernicus. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=form) (accessed on 22 December 2021).
- European Environment Agency. Global mean sea level projections up to 2100 for three representative concentration pathways (RCPs). European Environment Agency (2019). Available online: https://www.eea.europa.eu/data-and-maps/indicators/sea-level-rise-6/assessment (accessed on 23 December 2021).
- Union of Concerned Scientists (UCS). Causes of Sea Level Rise: What the Science Tells Us (2013). Available online: http://www.ucsusa.org/global_warming/science_and_impacts/impacts/causes-of-sea-level-rise.html#.VDZ11dTLcp0 (accessed on 20 December 2021).
- Sarwar, M.G.M. Sea-level rise along the coast of Bangladesh. In Disaster Risk Reduction Approaches in Bangladesh; Springer: Tokyo, Japan, 2013; pp. 217–231. [Google Scholar]
- Nishat, A.; Mukherjee, N. Sea level rise and its impacts in coastal areas of Bangladesh. In Climate Change Adaptation Actions in Bangladesh; Springer: Tokyo, Japan, 2013; pp. 43–50. [Google Scholar]
- Ghosh, S.; Hazra, S.; Nandy, S.; Mondal, P.P.; Watham, T.; Kushwaha, S.P.S. Trends of sea level in the Bay of Bengal using altimetry and other complementary techniques. J. Spat. Sci. 2018, 63, 49–62. [Google Scholar] [CrossRef]
- Hazra, S.; Ghosh, T.; DasGupta, R.; Sen, G. Sea level and associated changes in the Sundarbans. Sci. Cult. 2002, 68, 309–321. [Google Scholar]
- Becker, M.; Karpytchev, M.; Papa, F. Hotspots of relative sea level rise in the Tropics. In Tropical Extremes: Natural Variability and Trends; Elsevier: Amsterdam, The Netherlands, 2019; pp. 203–262. [Google Scholar]
- Haghighi, M.H.; Motagh, M. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sens. Environ. 2019, 221, 534–550. [Google Scholar] [CrossRef]
- Zoccarato, C.; Minderhoud, P.S.; Teatini, P. The role of sedimentation and natural compaction in a prograding delta: Insights from the mega Mekong delta, Vietnam. Sci. Rep. 2018, 8, 11437. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.R.; Huismans, Y.; Knaake, S.M.; Leuven, J.R.F.W.; Vellinga, N.E.; van der Vegt, M.; Hoitink, A.J.F.; Kleinhans, M.G. Anthropogenic Effects on the Contemporary Sediment Budget of the Lower Rhine-Meuse Delta Channel Network. Earth’s Future 2021, 9, e2020EF001869. [Google Scholar] [CrossRef]
- Steckler, M.S.; Oryan, B.; Wilson, C.A.; Grall, C.; Nooner, S.L.; Mondal, D.R.; Akhter, S.H.; DeWolf, S.; Goodbred, S.L. Synthesis of the distribution of subsidence of the lower Ganges-Brahmaputra Delta, Bangladesh. Earth-Sci. Rev. 2022, 224, 103887. [Google Scholar] [CrossRef]
- Goodbred, S.L., Jr.; Paolo, P.M.; Ullah, M.S.; Pate, R.D.; Khan, S.R.; Kuehl, S.A.; Singh, S.K.; Rahaman, W. Piecing together the Ganges-Brahmaputra-Meghna River delta: Use of sediment provenance to reconstruct the history and interaction of multiple fluvial systems during Holocene delta evolution. Bulletin 2014, 126, 1495–1510. [Google Scholar] [CrossRef]
- Schiermeier, Q. Holding back the tide. Nature 2014, 508, 164. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.R.; Islam, B. Holocene stratigraphy of the lower Ganges-Brahmaputra river delta in Bangladesh. Front. Earth Sci. China 2008, 2, 393–399. [Google Scholar] [CrossRef]
- Maurer, J.; Rupper, S.; Schaefer, J. High Mountain Asia Glacier Thickness Change Mosaics from Multi-Sensor DEMs, Version 1; Indicate Subset Used; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar]
- Zahid, A.; Ahmed, S.R.U. Groundwater resources development in Bangladesh: Contribution to irrigation for food security and constraints to sustainability. Groundw. Gov. Asia Series 2006, 1, 25–46. [Google Scholar]
- Reliefweb. Invisible Hazard of Groundwater Depletion. 2011. Available online: https://reliefweb.int/report/bangladesh/invisible-hazard-groundwater-depletion (accessed on 10 June 2021).
- Brown, S.; Nicholls, R.J. Subsidence and human influences in mega deltas: The case of the Ganges-Brahmaputra-Meghna. Sci. Total Environ. 2015, 527–528, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Payo, A.; Mukhopadhyay, A.; Hazra, S.; Ghosh, T.; Ghosh, S.; Brown, S.; Nicholls, R.J.; Bricheno, L.; Wolf, J.; Kay, S.; et al. Projected changes in area of the Sundarban mangrove forest in Bangladesh due to SLR by 2100. Clim. Chang. 2016, 139, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, M.K.; Kumar, L.; Kibet Langat, P. Geospatial modelling of the inundation levels in the Sundarbans mangrove forests due to the impact of sea level rise and identification of affected species and regions. Geomat. Nat. Hazards Risk 2019, 10, 1028–1046. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Riva, R.; Frederikse, T. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations. Ocean Sci. 2018, 14, 187–204. [Google Scholar] [CrossRef] [Green Version]
- Sorkhabi, O.M.; Asgari, J.; Amiri-Simkooei, A. Monitoring of Caspian Sea-level changes using deep learning-based 3D reconstruction of GRACE signal. Measurement 2021, 174, 109004. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef] [Green Version]
- Maurer, J.M.; Schaefer, J.M.; Rupper, S.; Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 2019, 5, eaav7266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azam, M.F.; Wagnon, P.; Berthier, E.; Vincent, C.; Fujita, K.; Kargel, J.S. Review of the status and mass changes of Himalayan-Karakoram glaciers. J. Glaciol. 2018, 64, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
Year (Char Changa) | Latitude | Longitude | Lowest | Highest | Average | Year (Hiron Point) | Latitude | Longitude | Lowest | Highest | Average | Year (Cox’s Bazar) | Latitude | Longitude | Highest |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1993 | 21.78 | 89.47 | 0.58 | 3.82 | 2.20 | 1993 | 22.23 | 91.05 | 0.28 | 3.20 | 1.74 | 1993 | 21.45 | 91.83 | 3.85 |
1994 | 21.78 | 89.47 | 0.52 | 3.98 | 2.25 | 1994 | 22.23 | 91.05 | 0.26 | 3.25 | 1.75 | 1994 | 21.45 | 91.83 | 3.75 |
1995 | 21.78 | 89.47 | 0.67 | 4.12 | 2.39 | 1995 | 22.23 | 91.05 | 0.37 | 3.30 | 1.84 | 1995 | 21.45 | 91.83 | 3.99 |
1996 | 21.78 | 89.47 | 0.66 | 3.90 | 2.28 | 1996 | 22.23 | 91.05 | 0.38 | 3.29 | 1.84 | 1996 | 21.45 | 91.83 | 3.91 |
1997 | 21.78 | 89.47 | 0.58 | 4.03 | 2.30 | 1997 | 22.23 | 91.05 | 0.21 | 3.22 | 1.72 | 1997 | 21.45 | 91.83 | 3.83 |
1998 | 21.78 | 89.47 | 0.64 | 4.18 | 2.41 | 1998 | 22.23 | 91.05 | 0.41 | 3.33 | 1.87 | 1998 | 21.45 | 91.83 | 3.91 |
1999 | 21.78 | 89.47 | 0.70 | 4.08 | 2.39 | 1999 | 22.23 | 91.05 | 0.29 | 3.27 | 1.78 | 1999 | 21.45 | 91.83 | 3.96 |
2000 | 21.78 | 89.47 | 0.61 | 4.07 | 2.34 | 2000 | 22.23 | 91.05 | 0.43 | 3.44 | 1.93 | 2000 | 21.45 | 91.83 | 4.00 |
2001 | 21.78 | 89.47 | 0.67 | 3.96 | 2.32 | 2001 | 22.23 | 91.05 | 0.48 | 3.44 | 1.96 | 2001 | 21.45 | 91.83 | 3.95 |
2002 | 21.78 | 89.47 | 0.66 | 4.07 | 2.36 | 2002 | 22.23 | 91.05 | 0.33 | 3.28 | 1.80 | 2002 | 21.45 | 91.83 | 4.01 |
2003 | 21.78 | 89.47 | 0.55 | 3.72 | 2.14 | 2003 | 22.23 | 91.05 | 0.41 | 3.38 | 1.89 | 2003 | 21.45 | 91.83 | 3.92 |
2004 | 21.78 | 89.47 | 0.52 | 3.79 | 2.16 | 2004 | 22.23 | 91.05 | 0.34 | 3.41 | 1.87 | 2004 | 21.45 | 91.83 | 3.85 |
2005 | 21.78 | 89.47 | 0.53 | 3.78 | 2.15 | 2005 | 22.23 | 91.05 | 0.37 | 3.37 | 1.87 | 2005 | 21.45 | 91.83 | 4.02 |
2006 | 21.78 | 89.47 | 0.56 | 3.86 | 2.21 | 2006 | 22.23 | 91.05 | 0.26 | 3.27 | 1.77 | 2006 | 21.45 | 91.83 | 3.97 |
2007 | 21.78 | 89.47 | 0.68 | 4.02 | 2.35 | 2007 | 22.23 | 91.05 | 0.29 | 3.39 | 1.84 | 2007 | 21.45 | 91.83 | 4.07 |
2008 | 21.78 | 89.47 | 0.70 | 4.02 | 2.36 | 2008 | 22.23 | 91.05 | 0.41 | 3.48 | 1.95 | 2008 | 21.45 | 91.83 | 4.07 |
2009 | 21.78 | 89.47 | 0.74 | 4.00 | 2.37 | 2009 | 22.23 | 91.05 | 0.43 | 3.52 | 1.97 | 2009 | 21.45 | 91.83 | 4.11 |
2010 | 21.78 | 89.47 | 0.70 | 4.05 | 2.38 | 2010 | 22.23 | 91.05 | 0.41 | 3.34 | 1.88 | 2010 | 21.45 | 91.83 | 4.15 |
2011 | 21.78 | 89.47 | 0.68 | 4.04 | 2.36 | 2011 | 22.23 | 91.05 | 0.37 | 3.29 | 1.83 | 2011 | 21.45 | 91.83 | 4.07 |
2012 | 21.78 | 89.47 | 0.73 | 4.07 | 2.40 | 2012 | 22.23 | 91.05 | 0.36 | 3.33 | 1.84 | - | - | ||
2013 | 21.78 | 89.47 | 0.60 | 3.97 | 2.29 | 2013 | 22.23 | 91.05 | 0.40 | 3.32 | 1.86 | - | - | ||
2014 | 21.78 | 89.47 | 0.84 | 4.15 | 2.50 | 2014 | 22.23 | 91.05 | 0.37 | 3.40 | 1.88 | - | - | ||
2015 | 21.78 | 89.47 | 0.78 | 4.13 | 2.45 | 2015 | 22.23 | 91.05 | 0.35 | 3.33 | 1.84 | - | - | ||
2016 | 21.78 | 89.47 | 0.75 | 4.15 | 2.45 | 2016 | 22.23 | 91.05 | 0.38 | 3.47 | 1.93 | - | - | ||
2017 | 21.78 | 89.47 | 0.79 | 4.33 | 2.56 | 2017 | 22.23 | 91.05 | 0.34 | 3.41 | 1.87 | - | - | ||
2018 | 21.78 | 89.47 | 0.76 | 4.24 | 2.50 | 2018 | 22.23 | 91.05 | 0.30 | 3.36 | 1.83 | - | - | ||
2019 | 21.78 | 89.47 | 0.64 | 4.17 | 2.40 | 2019 | 22.23 | 91.05 | 0.28 | 3.47 | 1.87 | - | - |
Data BWDB | Kalaroa | Benarpota | Protapnagar | Basantapur | Kaikhali | Tala Magura | Chandkhali | Elarchari | Kobadak Forest | Shakra |
---|---|---|---|---|---|---|---|---|---|---|
Latitude | 22.87 | 22.39 | 22.46 | 22.19 | 22.73 | 22.52 | 22.66 | 22.22 | 22.63 | |
Longitude | 89.05 | 89.19 | 89.03 | 89.08 | 89.27 | 89.25 | 89.05 | 89.31 | 88.95 | |
Year | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average |
1968 | 1527.89 | 913.85 | 567.36 | 838.18 | 563.74 | 619.38 | 657.13 | 1529.89 | 343.53 | 1030.49 |
1969 | 1279.15 | 806.88 | 579.05 | 752.12 | 514.53 | 607.27 | 577.26 | 1659.47 | 255.51 | 1088.18 |
1970 | 1566.59 | 1000.82 | 628.79 | 802.01 | 588.03 | 523.10 | 532.79 | 1087.67 | 305.44 | 1148.69 |
1971 | 1705.26 | 969.78 | 388.94 | 785.92 | 540.31 | 572.65 | 548.63 | 1402.27 | 334.85 | 1233.60 |
1972 | 1045.22 | 682.91 | 560.60 | 705.82 | 533.71 | 493.55 | 543.09 | 1286.23 | 266.49 | 996.73 |
1973 | 1293.06 | 765.27 | 656.79 | 824.48 | 532.23 | 569.12 | 572.29 | 1554.44 | 302.78 | 980.34 |
1974 | 1357.07 | 808.53 | 591.01 | 686.57 | 668.48 | 754.71 | 697.34 | 1335.00 | 383.81 | 927.81 |
1975 | 1275.89 | 780.21 | 572.85 | 908.60 | 609.77 | 550.44 | 624.35 | 1704.02 | 353.40 | 822.71 |
1976 | 1241.86 | 642.79 | 524.21 | 1167.65 | 1419.70 | 310.33 | 624.86 | 1683.58 | 302.16 | 1021.16 |
1977 | 1331.37 | 789.60 | 588.42 | 1193.64 | 1668.00 | 575.45 | 652.51 | 1564.43 | 142.79 | 1059.70 |
1978 | 649.44 | 636.54 | 415.36 | 838.89 | 451.11 | 597.28 | 403.45 | 1600.52 | 298.63 | 1527.30 |
1979 | 1712.67 | 874.36 | 467.49 | 1160.55 | 392.36 | 1144.42 | 805.58 | 1567.53 | 349.36 | 1759.69 |
1980 | 1518.58 | 760.46 | 419.02 | 1080.30 | 496.20 | 994.74 | 711.84 | 1579.56 | 339.43 | 1855.33 |
1981 | 1816.70 | 852.62 | 748.79 | 1124.03 | 549.62 | 899.73 | 702.41 | 1519.89 | 416.33 | 1718.40 |
1982 | 1133.10 | 691.83 | 350.49 | 961.55 | 464.73 | 141.50 | 581.69 | 1586.99 | 331.20 | 455.56 |
1983 | 1290.90 | 879.98 | −81.25 | 799.07 | 397.38 | 653.56 | 675.29 | 1641.07 | 413.97 | 956.51 |
1984 | 1700.44 | 935.71 | −88.52 | 855.89 | 808.55 | 672.87 | 666.21 | 1515.33 | 456.37 | 930.81 |
1985 | 1372.66 | 754.90 | 64.26 | 803.49 | 793.44 | 564.23 | 598.04 | 2056.00 | 372.63 | 924.70 |
1986 | 1834.37 | 983.37 | −12.67 | 747.22 | 742.59 | 631.41 | 566.47 | 1969.01 | 394.21 | 901.99 |
1987 | 1734.32 | 905.40 | 151.18 | 784.32 | 643.14 | 581.30 | 730.29 | 2040.64 | 496.15 | 858.79 |
1988 | 1732.86 | 994.78 | 335.31 | 900.05 | 522.14 | 805.77 | 667.55 | 2010.27 | 399.32 | 1159.39 |
1989 | 1589.96 | 949.67 | 498.32 | 866.04 | 820.92 | 876.33 | 438.74 | 1883.10 | 522.07 | 848.96 |
1990 | 1828.48 | 997.44 | 270.38 | 886.25 | 821.85 | 937.61 | 625.59 | 1865.23 | 600.70 | 880.15 |
1991 | 1735.01 | 981.60 | 329.25 | 784.78 | 785.64 | 1274.89 | 567.86 | 1752.11 | 442.23 | 865.22 |
1992 | 2479.36 | 1072.17 | 568.41 | 788.73 | 784.55 | 183.35 | 585.08 | 1638.68 | 281.69 | 541.32 |
1993 | 2176.78 | 1337.95 | 342.66 | 804.12 | 805.32 | 827.93 | 446.59 | 1272.42 | 325.71 | 834.87 |
1994 | 1889.36 | 1328.38 | 277.89 | 777.01 | 557.97 | 671.29 | 540.40 | 1793.14 | 232.47 | 747.05 |
1995 | 2304.25 | 1477.07 | 198.75 | 842.45 | 742.64 | 658.44 | 196.01 | 1825.93 | 138.27 | 781.49 |
1996 | 2647.88 | 1454.39 | 48.20 | 778.14 | 927.32 | 674.11 | 309.08 | 2144.30 | 182.24 | 899.85 |
1997 | 2530.64 | 1481.29 | 66.89 | 691.71 | 726.33 | 670.75 | 572.11 | 2148.46 | 16.01 | 748.45 |
1998 | 2509.67 | 1266.26 | −172.55 | 794.10 | 814.99 | 784.44 | 578.29 | 2419.32 | −130.89 | 880.55 |
1999 | 2597.43 | 1537.21 | −299.93 | 905.36 | 849.25 | 752.15 | 579.08 | 2552.59 | −42.00 | 898.19 |
2000 | 1935.81 | 1795.58 | 29.60 | 968.90 | 844.21 | 767.82 | 611.81 | 2685.87 | −67.77 | 1055.65 |
2001 | 2823.40 | 1559.10 | 97.34 | 855.89 | 825.78 | 643.26 | 676.10 | 2455.96 | −337.12 | 917.13 |
2002 | 2380.10 | 1519.29 | 370.98 | 862.07 | 813.40 | 544.03 | 2342.51 | 308.86 | 890.71 | |
2003 | 2629.24 | 1080.77 | 202.69 | 933.16 | 787.06 | 444.80 | 1744.33 | 180.93 | 867.64 | |
2004 | 2880.26 | 1233.98 | 363.43 | 821.58 | 777.26 | 846.49 | 1992.79 | −311.65 | 949.47 | |
2005 | 3391.31 | 1382.43 | 118.53 | 714.00 | 851.40 | 996.15 | 2161.86 | −175.15 | 1203.61 | |
2006 | 2799.31 | 1424.37 | 761.31 | 717.53 | 806.12 | 750.72 | 2032.76 | −279.02 | 1177.83 | |
2007 | 2879.91 | 1166.62 | 1124.29 | 876.79 | 711.85 | −31.98 | 2740.13 | −82.51 | 743.25 | |
2008 | 3193.69 | 1647.87 | 759.71 | 869.00 | 870.13 | 224.62 | 3447.50 | −289.85 | 761.57 | |
2009 | 2304.01 | 1560.83 | 575.12 | 795.97 | 897.74 | 642.56 | −306.34 | 846.13 | ||
2010 | 1870.99 | 1789.15 | 395.86 | 945.67 | 981.10 | 454.66 | −377.69 | 930.70 | ||
2011 | 2273.29 | 2421.52 | 416.34 | 1104.51 | 1007.99 | 829.60 | 924.81 | |||
2012 | 2274.03 | 2761.69 | 309.34 | 1155.52 | 1027.43 | 511.34 | 1105.99 | |||
2013 | 2983.97 | 3237.05 | 291.93 | 1270.08 | 1034.08 | 1621.39 | 1069.86 | |||
2014 | 3406.19 | 2857.87 | 439.44 | 1114.84 | 986.51 | 2824.77 | 983.64 | |||
2015 | 3438.19 | 2751.72 | 765.30 | 896.21 | 1031.63 | 1833.07 | 971.21 | |||
2016 | 3470.18 | 3232.11 | 868.99 | 888.36 | 1015.98 | 1478.88 | 1101.93 | |||
2017 | 3169.51 | 3712.50 | 772.99 | 996.15 | 1298.65 | 943.99 | ||||
2018 | 2946.99 | 700.60 | 954.79 | 893.25 | ||||||
2019 | 2446.49 | 559.94 | 792.66 | 650.80 |
Time Frame (Years) | Water Level Trend (mm/yr) | Correlation (R2) | Trend Line Equation | Estimated Level in 2050 (mm) | SLC from 2020 to 2050 (mm) | Estimated Level in 2100 (mm) | SLC from 2020 to 2100 (mm) |
---|---|---|---|---|---|---|---|
Char Changa 1993–2019 | 7.6 | 0.3066 | y = 0.0076x − 12.881 | 2699 | 228 | 3079 | 608 |
Cox’s Bazar 1993–2011 | 14.52 | 0.6097 | y = 0.0145x − 25.1079 | 4665 | 435.7 | 5391 | 1162 |
Hiron Point 1993–2019 | 31 | 0.1466 | y = 0.0031x − 4.4224 | 1932.6 | 93 | 2087.6 | 248 |
Time Frame | Trend (mm/yr) | Correlation | Tread Line Equation | Estimated Level in 2050 (mm) | SLC from 2020 to 2050 (mm) | Estimated Level in 2100 (mm) | SLC from 2020 to 2100 (mm) | |
---|---|---|---|---|---|---|---|---|
Global | 1992–2020 | 2.935 | 0.9192 | y = 2.9345x − 5869.4 | 146.325 | 88.035 | 293.05 | 234.76 |
Regional (Bay of Bengal) | 1992–2020 | 3.366 | 0.3516 | y = 3.3664x − 6733.6 | 167.25 | 100.992 | 335.84 | 269.312 |
Global SLR | Bengal Bay SLR | Char Changa | Hiron Point | Cox’s Bazar | Legend | |
---|---|---|---|---|---|---|
Global SLR | 1 | 0.70 | 0.32 | 0.12 | 0.58 | >0.2 |
Bengal Bay SLR | 0.70 | 1 | 0.30 | 0.19 | 0.56 | |
0.1–0.2 | ||||||
Char Changa | 0.32 | 0.30 | 1 | 0.04 | 0.23 | |
Hiron Point | 0.12 | 0.19 | 0.04 | 1 | 0.39 | <0.1 |
Cox’s Bazar | 0.58 | 0.56 | 0.23 | 0.39 | 1 |
Region—TOPEX and Jason-1, -2, -3 Seasonal Signals Retained | MSL Trend mm/yr (1992–2022) |
---|---|
Pacific Ocean | 2.8 ± 0.4 |
North Pacific Ocean | 3.0 ± 0.4 |
Atlantic Ocean | 3.1 ± 0.4 |
North Atlantic Ocean | 2.7 ± 0.4 |
Indian Ocean | 3.3 ± 0.4 |
Adriatic Sea | 2.2 ± 0.4 |
Global Sea | 3.0 ± 0.4 |
Baltic Sea | 3.8 ± 0.4 |
Bay of Bengal | 3.9 ± 0.4 |
Bering Sea | 1.8 ± 0.4 |
Caribbean Sea | 3.0 ± 0.4 |
Gulf of Mexico | 3.9 ± 0.4 |
North Sea | 2.8 ± 0.4 |
Mediterranean Sea | 2.3 ± 0.4 |
Sea of Okhotsk | 2.1 ± 0.4 |
Sea of Japan | 3.0 ± 0.4 |
South China Sea | 3.8 ± 0.4 |
Southern Ocean | 3.2 ± 0.4 |
Yellow Sea | 2.7 ± 0.4 |
Country | Previous Study | New Study | Change |
---|---|---|---|
1. China | 29 million people | 93 million people | +67 million people |
2. Bangladesh | 5 million people | 42 million people | +37 million people |
3. India | 5 million people | 36 million people | +31 million people |
4. Vietnam | 9 million people | 31 million people | +22 million people |
5. Indonesia | 5 million people | 23 million people | +18 million people |
6.Thailand | 1 million people | 12 million people | +11 million people |
Total, global | 79 million people | 300 million people | +221 million people |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashrafuzzaman, M.; Santos, F.D.; Dias, J.M.; Cerdà, A. Dynamics and Causes of Sea Level Rise in the Coastal Region of Southwest Bangladesh at Global, Regional, and Local Levels. J. Mar. Sci. Eng. 2022, 10, 779. https://doi.org/10.3390/jmse10060779
Ashrafuzzaman M, Santos FD, Dias JM, Cerdà A. Dynamics and Causes of Sea Level Rise in the Coastal Region of Southwest Bangladesh at Global, Regional, and Local Levels. Journal of Marine Science and Engineering. 2022; 10(6):779. https://doi.org/10.3390/jmse10060779
Chicago/Turabian StyleAshrafuzzaman, Md., Filipe Duarte Santos, João Miguel Dias, and Artemi Cerdà. 2022. "Dynamics and Causes of Sea Level Rise in the Coastal Region of Southwest Bangladesh at Global, Regional, and Local Levels" Journal of Marine Science and Engineering 10, no. 6: 779. https://doi.org/10.3390/jmse10060779
APA StyleAshrafuzzaman, M., Santos, F. D., Dias, J. M., & Cerdà, A. (2022). Dynamics and Causes of Sea Level Rise in the Coastal Region of Southwest Bangladesh at Global, Regional, and Local Levels. Journal of Marine Science and Engineering, 10(6), 779. https://doi.org/10.3390/jmse10060779