FBLS-Based Fusion Method for Unmanned Surface Vessel Positioning Considering Denoising Algorithm
Abstract
:1. Introduction
- (1)
- Aiming at the difficulty that the INS suffers from the interference of stochastic errors, this article proposes a composition framework based on nonlinear generalization capability of SVM and multi-resolution ability of wavelet transform without influencing the dynamic data of the ship.
- (2)
- Focusing on simple model structure and short training time of fuzzy broad learning theory, this article fuses uncertain sensory information derived from INS and GPS.
- (3)
- Verifying the validity and feasibility of the proposed method by comparing with current popular methods for INS/GPS integration.
2. Proposed Method
- Analysis of Error Models of INS
- 2.
- State and Measurement Models
3. Denoising of Combing Wavelet and SVM Method
3.1. SVM Approach
3.2. Denoising Method Based on Wavelet and SVM
4. Fuzzy Broad Learning System
4.1. FBLS Structure
4.2. FBLS-Aided Integrated Navigation System
5. Experimental Results and Analysis
5.1. USV Platform Experiment
5.2. USV Sea Trial
- (1)
- Experiments Introduction
- (2)
- Evaluation of Noise Reduction Effects
- (3)
- Results Analysis of with Other Algorithms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Huang, L.; Liu, J.; Deng, Z.; Fu, M. A Support Vector Regression-Based Integrated Navigation Method for Underwater Vehicles. IEEE Sens. J. 2020, 20, 8875–8883. [Google Scholar] [CrossRef]
- Poulose, A.; Eyobu, O.S.; Han, D.S. An Indoor Position-Estimation Algorithm Using Smartphone IMU Sensor Data. IEEE Access 2019, 7, 11165–11177. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, C.; Guo, C.; Li, T.; Guo, M. Navigation Multisensor Fault Diagnosis Approach for an Unmanned Surface Vessel Adopted Particle-Filter Method. IEEE Sens. J. 2021, 21, 27093–27105. [Google Scholar] [CrossRef]
- Fish, S.; Sitzman, A. Unmanned Vehicles for Mobile Electromagnetic Launch Platforms. IEEE Trans. Magn. 2009, 45, 639–640. [Google Scholar] [CrossRef]
- Kim, J. Target Following and Close Monitoring Using an Unmanned Surface Vehicle. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 4233–4242. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Bucknall, R. A Robust Localization Method for Unmanned Surface Vehicle (USV) Navigation Using Fuzzy Adaptive Kalman Filtering. IEEE Access 2019, 7, 46071–46083. [Google Scholar] [CrossRef]
- Chen, Q.; Yin, C.; Zhou, J.; Wang, Y.; Wang, X.; Chen, C. Hybrid Consensus-Based Cubature Kalman Filtering for Distributed State Estimation in Sensor Networks. IEEE Sens. J. 2018, 18, 4561–4569. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.; Zhang, T.; Wang, Z. In-Motion filter-QUEST alignment for strapdown inertial navigation systems. IEEE Trans. Instrum. Meas. 2018, 67, 1979–1993. [Google Scholar] [CrossRef]
- Abdolkarimi, E.S.; Abaei, G.; Mosavi, M.R. A wavelet-extreme learning machine for low-cost INS/GPS navigation system in high-speed applications. GPS Solut. 2018, 22, 15. [Google Scholar] [CrossRef]
- Zhu, Z.; Bo, Y.; Jiang, C. A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network. Math. Probl. Eng. 2019, 2019, 5491243. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, W.; Chan, C.; Li, B.; Song, X. Multi-sensor fusion methodology for enhanced land vehicle positioning. Inf. Fusion 2019, 46, 51–62. [Google Scholar] [CrossRef]
- Guerrier, S.; Molinari, R.; Stebler, Y. Theoretical Limitations of Allan Variance-based Regression for Time Series Model Estimation. IEEE Signal Process. Lett. 2016, 23, 597–601. [Google Scholar] [CrossRef]
- Li, J.; Song, N.; Yang, G.; Li, M.; Cai, Q. Improving positioning accuracy of vehicular navigation system during GPS outages utilizing ensemble learning algorithm. Inf. Fusion 2017, 35, 1–10. [Google Scholar] [CrossRef]
- El-Sheimy, N.; Chiang, K.-W.; Noureldin, A. The Utilization of Artificial Neural Networks for Multisensor System Integration in Navigation and Positioning Instruments. IEEE Trans. Instrum. Meas. 2006, 55, 1606–1615. [Google Scholar] [CrossRef]
- Noureldin, A.; El-Shafie, A.; Bayoumi, M. GPS/INS integration utilizing dynamic neural networks for vehicular navigation. Inf. Fusion 2011, 12, 48–57. [Google Scholar] [CrossRef]
- Alnuaimi, M.; Perhinschi, M.G. Investigation of Alternative Parameters for Immunity-based UAV Navigation in GNSS-denied Environment. Unmanned Syst. 2021, 9, 65–72. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Li, B.; Song, X.; Cai, Z. A Reliable Hybrid Positioning Methodology for Land Vehicles Using Low-Cost Sensors. IEEE Trans. Intell. Transp. Syst. 2016, 17, 834–847. [Google Scholar] [CrossRef]
- Fang, W.; Jiang, J.; Lu, S.; Gong, Y.; Tao, Y.; Tang, Y.; Yan, P.; Luo, H.; Liu, J. A LSTM Algorithm Estimating Pseudo Measurements for Aiding INS during GNSS Signal Outages. Remote Sens. 2020, 12, 256. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Wang, J.; Jin, S.; Meng, X. GA-SVR and Pseudo-position-aided GPS/INS Integration during GPS Outage. J. Navig. 2015, 68, 678–696. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wang, W.; Yin, C.; Jin, X.; Zhou, J. Distributed cubature information filtering based on weighted average consensus. Neurocomputing 2017, 243, 115–124. [Google Scholar] [CrossRef]
- Malathi, V.; Marimuthu, N.; Baskar, S. Intelligent approaches using support vector machine and extreme learning machine for transmission line protection. Neurocomputing 2010, 73, 2160–2167. [Google Scholar] [CrossRef]
- Cong, L.; Yue, S.; Qin, H.; Li, B.; Yao, J. Implementation of a MEMS-Based GNSS/INS Integrated Scheme Using Supported Vector Machine for Land Vehicle Navigation. IEEE Sens. J. 2020, 20, 14423–14435. [Google Scholar] [CrossRef]
- Zhang, Z. Bayesian growth curve models with the generalized error distribution. J. Appl. Stat. 2013, 40, 1779–1795. [Google Scholar] [CrossRef]
- Chu, F.; Liang, T.; Chen, C.L.P.; Wang, X.; Ma, X. Weighted Broad Learning System and Its Application in Nonlinear Industrial Process Modeling. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 3017–3031. [Google Scholar] [CrossRef] [PubMed]
Specifications | Gyroscopes | Accelerometers |
---|---|---|
Range | ±100°/s | ±19.6 m/s2 |
Bias | <±2.0°/s | <±0.294 m/s2 |
Scale Factor | <1% | <1% |
Angle Random Walk |
RMS | |||
---|---|---|---|
Wavelet | Combined Wavelet | Proposed Method | |
x-axis gyroscope | 0.135 | 0.112 | 0.088 |
y-axis gyroscope | 0.085 | 0.063 | 0.050 |
x-axis accelerometer | 4.156 | 3.895 | 3.521 |
y-axis accelerometer | 2.584 | 2.322 | 2.301 |
z-axis accelerometer | 0.315 | 0.246 | 0.231 |
RMS | ||
---|---|---|
Original IMU | Proposed Method | |
x-axis gyroscope | 0.712 | 0.235 |
y-axis gyroscope | 0.475 | 0.213 |
z-axis gyroscope | 0.798 | 0.712 |
x-axis accelerometer | 9.863 | 8.224 |
y-axis accelerometer | 23.543 | 21.076 |
z-axis accelerometer | 15.086 | 4.366 |
No Outage | Maximum Error | RMS Error | ||||||
---|---|---|---|---|---|---|---|---|
KF | BPNN | ELM | FBLS | KF | BPNN | ELM | FBLS | |
1 | 86.4 | 42.6 | 28.7 | 25.4 | 40.7 | 16.8 | 8.5 | 7.2 |
2 | 301.7 | 234.3 | 154.1 | 84.4 | 151.6 | 108.5 | 87.9 | 66.5 |
3 | 71.5 | 35.8 | 25.4 | 20.6 | 31.6 | 12.7 | 7.5 | 6.4 |
4 | 272.7 | 203.5 | 135.9 | 70.8 | 140.6 | 105.7 | 80.6 | 57.8 |
5 | 70.6 | 34.7 | 20.8 | 20.5 | 30.4 | 12.6 | 7.2 | 5.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, S.; Zhang, B.; Zhang, C. FBLS-Based Fusion Method for Unmanned Surface Vessel Positioning Considering Denoising Algorithm. J. Mar. Sci. Eng. 2022, 10, 905. https://doi.org/10.3390/jmse10070905
Wang Q, Liu S, Zhang B, Zhang C. FBLS-Based Fusion Method for Unmanned Surface Vessel Positioning Considering Denoising Algorithm. Journal of Marine Science and Engineering. 2022; 10(7):905. https://doi.org/10.3390/jmse10070905
Chicago/Turabian StyleWang, Qifu, Songtao Liu, Bingyan Zhang, and Chuang Zhang. 2022. "FBLS-Based Fusion Method for Unmanned Surface Vessel Positioning Considering Denoising Algorithm" Journal of Marine Science and Engineering 10, no. 7: 905. https://doi.org/10.3390/jmse10070905
APA StyleWang, Q., Liu, S., Zhang, B., & Zhang, C. (2022). FBLS-Based Fusion Method for Unmanned Surface Vessel Positioning Considering Denoising Algorithm. Journal of Marine Science and Engineering, 10(7), 905. https://doi.org/10.3390/jmse10070905