Cost, Energy Efficiency and Carbon Footprint Analysis of Hybrid Light-Weight Bulk Carrier
Abstract
:1. Introduction
2. Environmental Implications of Hybrid Light-Weight Design in Shipbuilding
3. Alternative Hybrid Light-Weight Ship Hull Structural Design
3.1. Decision Variables
3.2. Constraints for Steel Parts
- (a)
- Minimum plate thickness (local strength):
- (b)
- the minimum section modulus (longitudinal strength) is defined as:
- (c)
- the minimum critical buckling stress, defined as:
3.3. Constraints for AHS Parts
- (a)
- The deflection is defined as:
- (b)
- the facing skin stress:
- (c)
- the shear stress in the core:
- (d)
- panel buckling:
- (e)
- the shear crimping:
- (f)
- the skin wrinkling:
- (g)
- the intracell buckling:
- (h)
- the local compression:
3.4. Objective Functions
4. Multiple Criteria Ship Hull Structural Design Solution Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Papanikolaou, A. Holistic Ship Design Optimization. CAD Comput. Aided Des. 2010, 42, 1028–1044. [Google Scholar] [CrossRef]
- Turan, O.; Olcer, A.I.; Lazakis, I.; Rigo, P.; Caprace, J.D. Maintenance/Repair and Production-Oriented Life Cycle Cost/Earning Model for Ship Structural Optimisation during Conceptual Design Stage. Ships Offshore Struct. 2009, 4, 107–125. [Google Scholar] [CrossRef] [Green Version]
- Priftis, A.; Boulougouris, E.; Turan, O.; Atzampos, G. Multi-Objective Robust Early Stage Ship Design Optimisation under Uncertainty Utilising Surrogate Models. Ocean Eng. 2020, 197, 106850. [Google Scholar] [CrossRef]
- Nepomuceno de Oliveira, M.A.; Szklo, A.; Castelo Branco, D.A. Implementation of Maritime Transport Mitigation Measures According to Their Marginal Abatement Costs and Their Mitigation Potentials. Energy Policy 2022, 160, 112699. [Google Scholar] [CrossRef]
- Rahman, A.; Karim, M.M. Green Shipbuilding and Recycling: Issues and Challenges. Int. J. Environ. Sci. Dev. 2015, 6, 838–842. [Google Scholar] [CrossRef] [Green Version]
- Palomba, G.; Epasto, G.; Crupi, V. Lightweight Sandwich Structures for Marine Applications: A Review. Mech. Adv. Mater. Struct. 2021, 1–26. [Google Scholar] [CrossRef]
- Palomba, G.; Epasto, G.; Sutherland, L.; Crupi, V. Aluminium Honeycomb Sandwich as a Design Alternative for Lightweight Marine Structures. Ships Offshore Struct. 2021, 1–12. [Google Scholar] [CrossRef]
- Palomba, G.; Crupi, V.; Garbatov, Y. Environmental Impact of Light-Weight Structures in Marine Applications. In Proceedings of the International Conference on Marine Structures MARSTRUCT 2021, Trondheim, Norway, 7–9 June 2021. [Google Scholar]
- Liu, K.; Zong, S.; Li, Y.; Wang, Z.; Hu, Z.; Wang, Z. Structural Response of the U-Type Corrugated Core Sandwich Panel Used in Ship Structures under the Lateral Quasi-Static Compression Load. Mar. Struct. 2022, 84, 103198. [Google Scholar] [CrossRef]
- Xue, B.; Peng, Y.X.; Ren, S.F.; Liu, N.N.; Zhang, Q. Investigation of Impact Resistance Performance of Pyramid Lattice Sandwich Structure Based on SPH-FEM. Compos. Struct. 2021, 261, 113561. [Google Scholar] [CrossRef]
- Chen, D.; Yan, R.; Lu, X. Mechanical Properties Analysis of the Naval Ship Similar Model with an Integrated Sandwich Composite Superstructure. Ocean Eng. 2021, 232, 109101. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Guo, K.; Zhu, L. Dynamic Mechanical Behaviour and Energy Absorption of Aluminium Honeycomb Sandwich Panels under Repeated Impact Loads. Ocean Eng. 2021, 219, 108344. [Google Scholar] [CrossRef]
- Palomba, G.; Hone, T.; Taylor, D.; Crupi, V. Bio-Inspired Protective Structures for Marine Applications. Bioinspir. Biomim. 2020, 15, 056016. [Google Scholar] [CrossRef] [PubMed]
- Zenkert, D. An Introduction to Sandwich Structures, 2nd ed; Technical University of Denmark: Lyngby, Denmark, 2005; 455p. [Google Scholar]
- IMO. Hong Kong International Convention For The Safe And Environmentally Sound Recycling Of Ships; IMO: London, UK, 2009. [Google Scholar]
- Önal, M.; Neşer, G.; Gürsel, K.T. Environmental Impacts of Steel Ship Hulls Building and Recycling by Life Cycle Assessment (LCA). Ships Offshore Struct. 2021, 16, 1061–1066. [Google Scholar] [CrossRef]
- He-ping, H. The Development Trend of Green Ship Building Technology; GSI: Guangzhou, China, 2008. [Google Scholar]
- Garbatov, Y.; Georgiev, P. Risk-Based Conceptual Ship Design of a Bulk Carrier Accounting for Energy Efficiency Design Index (EEDI). Int. J. Marit. Eng. 2021, 158, 1–12. [Google Scholar] [CrossRef]
- Garbatov, Y.; Scattareggia Marchese, S.; Palomba, G.; Crupi, V. Alternative Hybrid Lightweight Ship Hull Structural Design. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 99–107. [Google Scholar]
- Grimes, S.; Donaldson, J.; Gomez, G.C. Report on the Environmental Benefits of Recycling; BIR: Brussels, Belgium, 2008. [Google Scholar]
- Bureau of International Recycling (BIR) Report on the Environmental Benefits of Recycling - 2016 Edition; BIR: Brussels, Belgium, 2016.
- European Parliament; Council of the European Union. Regulation (EU) No 1257/2013. Off. J. Eur. Union 2013, d, 20. [Google Scholar]
- Choi, J.K.; Kelley, D.; Murphy, S.; Thangamani, D. Economic and Environmental Perspectives of End-of-Life Ship Management. Resour. Conserv. Recycl. 2016, 107, 82–91. [Google Scholar] [CrossRef]
- DNV. Hull Structural Design Ships with Length 100 Metres and Above; DVN: Høvik, Norway, 2008. [Google Scholar]
- HexCel HexWeb. Honeycomb Sandwich Design Technology. HexWeb Honeycomb Sandw. Des. Technol. 2000, 1–28. [Google Scholar]
- Komuro, R.; Ford, E.D.; Reynolds, J.H. The Use of Multi-Criteria Assessment in Developing a Process Model. Ecol. Modell. 2006, 197, 320–330. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- IMO. International Convention on Load Lines, 1966 and Protocol of 1988, as Amended in 2003, Consolidated Edition 2005; International Maritime Organization: London, UK, 2005. [Google Scholar]
- Schneekluth, H.; Bertram, V. Ship Design for Efficiency and Economy; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Kracht, A.M. Design of Bulbous Bows. Trans. Soc. Nav. Archit. Mar. Eng. 1978, 86, 197–217. [Google Scholar]
- Holtrop, J.; Mennen, G.G.J. An Approximate Power Prediction Method. Int. Shipbuild. Prog. 1982, 29, 166–170. [Google Scholar] [CrossRef]
- Ding, Y.; Ren, H.; Sui, C. Design and Application of a Ship Propulsion System Matching Platform with Low-Speed Engine. In Proceedings of the CIMAC, Vancouver, BC, Canada, 10–14 June 2019. [Google Scholar]
- Lamb, T. Ship Design and Construction; SNAME: Alexandria, VA, USA, 2003–2004; 2056p, ISBN 0-939773-40-6. [Google Scholar]
- The Maritime Engineering Reference Book; Molland, A.F. (Ed.) Butterworth-Heinemann: Oxford, UK, 2008; ISBN 978-0-7506-8987-8. [Google Scholar]
- DNV-GL. DNVGL-RU-9111:2015-7, Rules for Classification; DVN: Høvik, Norway, 2017. [Google Scholar]
- WÄRTSILÄ. Energy Efficiency Design Index; WÄRTSILÄ: Helsinki, Finland; Available online: https://www.wartsila.com/encyclopedia/term/energy-efficiency-design-index-(eedi) (accessed on 10 June 2022).
- Lee, K.H.; Kim, K.S.; Lee, J.H.; Park, J.H.; Kim, D.G.; Kim, D.S. Development of Enhanced Data Mining System to Approximate Empirical Formula for Ship Design. In Knowledge Science, Engineering and Management; Zhang, Z., Siekmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 425–436. [Google Scholar]
- Benford, H. The Practical Application of Economics to Merchant Ship Design. Mar. Technol. SNAME News 1967, 4, 519–536. [Google Scholar] [CrossRef]
- Smith, C.S. Influence of Local Compressive Failure on Ultimate Longitudinal Strength of a Ship’s Hull. In Proceedings of the International Symposium on Practical Design in Shipbuilding, Tokyo, Japan, 18–20 October 1977; pp. 73–79. [Google Scholar]
- Kaminski, M.; Amdahl, J.; Fasano, E.; Frieze, P.A.; Gordo, J.M.; Grundy, P.; Hess, P.E.; Kawamoto, Y.; Kujala, P.; Paik, J.K.; et al. Ultimate Strength. In Proceedings of the 14th International Ship and Offshore Structures Congress (ISSC), Nagasaki, Japan, 2–6 October 2000; pp. 321–391. [Google Scholar]
- Kee Paik, J.; Thayamballi, A.K.; Sung Kim, G. The Strength Characteristics of Aluminum Honeycomb Sandwich Panels. Thin-Walled Struct. 1999, 35, 205–231. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making, Methods and Applications A State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. ISBN 978-3-642-48318-9. [Google Scholar]
- Tzeng, G.-H.; Huang, J.-J. Multiple Attribute Decision Making: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2011; ISBN 1439861579. [Google Scholar]
- Mardani, A.; Jusoh, A.; Nor, K.M.D.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple Criteria Decision-Making Techniques and Their Applications-A Review of the Literature from 2000 to 2014. Econ. Res. Istraz. 2015, 28, 516–571. [Google Scholar] [CrossRef]
- Kaliszewski, I. Soft Computing for Complex Multiple Criteria Decision Making; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 85, ISBN 0387301771. [Google Scholar]
- Miettinen, K.; Hakanen, J.; Podkopaev, D. Interactive Nonlinear Multiobjective Optimization Methods BT-Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer New York: New York, NY, 2016; pp. 927–976. ISBN 978-1-4939-3094-4. [Google Scholar]
- Garbatov, Y.; Almany, N.; Tekgoz, M. Operational Behaviour of an Offshore Multipurpose Support Vessel in the Eastern Mediterranean Sea. Int. J. Marit. Eng. 2019, 161. [Google Scholar] [CrossRef]
- Georgiev, P.; Garbatov, Y.; Kirilov, L.; Denev, Y. Multi attribute design decision solution of MPV accounting for shipyard building constraints. In Sustainable Development and Innovations in Marine Technologies; CRC Press: Boca Raton, FL, USA, 2019; pp. 354–361. [Google Scholar]
- Ozturkoglu, Y.; Kazancoglu, Y.; Ozkan-Ozen, Y.D. Design for Sustainable Ship Dismantling Based on Triple Bottom Line Perspective. Int. J. Shipp. Transp. Logist. 2022, 14, 238–265. [Google Scholar] [CrossRef]
- Ahluwalia, R.S.; Sibal, P.; Govindarajulu, S. Comparison of Ship Dismantling Processes in India and the US. Intell. Manuf. 2004, 5263, 106–112. [Google Scholar] [CrossRef]
- Creese, R.C.; Nandeshwar, A.; Sibal, P. Ship Deconstruction Cost Models. AACE Int. Trans. 2002, ES91. [Google Scholar]
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Moore, L.J.; Bernard, T.W.; Clayton, E.R.; Lee, S.M. Analysis of a Multi-Criteria Project Crashing Model. AIIE Trans. 1978, 10, 163–169. [Google Scholar] [CrossRef]
- Corigliano, P.; Crupi, V.; Guglielmino, E. Non Linear Finite Element Simulation of Explosive Welded Joints of Dissimilar Metals for Shipbuilding Applications. Ocean Eng. 2018, 160, 346–353. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, D.; Wang, W.; Wang, Q. Mechanical Characterization of Hybrid Lattice-to-Steel Joint with Pyramidal CFRP Truss for Marine Application. Compos. Struct. 2017, 160, 1198–1204. [Google Scholar] [CrossRef]
- Seemann, R. A Virtual Testing Approach for Honeycomb Sandwich Panel Joints in Aircraft Interior; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783662602751. [Google Scholar]
Material | Primary Production | Secondary Production | ||||
---|---|---|---|---|---|---|
Manufacturing Process | Energy Consumption, Ep (MJ/kg) | Carbon Footprint, Cp (tonnesCO2) | Manufacturing Process | Energy Consumption, Es (MJ/kg) | Carbon Footprint, Cs (tonnesCO2) | |
Steel | BF-BOF | 21.9 | 1.97 | EAF | 11.7 | 0.7 |
DRI + EAF | 26.7 | 1.76 | ||||
Aluminium | Bayer Hall Héroult | 184.4 | 13.3 | Remelting and casting | 5 | 0.6 |
Variables: | DS1 | DS2 | DS3 |
---|---|---|---|
Length, L, m | 224.50 | 224.50 | 224.50 |
Beam, B, m | 40.70 | 40.70 | 40.70 |
Depth, D, m | 20.00 | 20.00 | 20.00 |
Draft, T, m | 14.60 | 14.60 | 14.36 |
Block Coefficient, Cb | 0.85 | 0.85 | 0.85 |
Ship Speed, knots | 13.00 | 13.00 | 13.00 |
Lightweight, t | 14,268.04 | 16,106.87 | 14,262.26 |
Annual Cargo, t | 834,468.95 | 776,603.61 | 828,145.91 |
Steel Weight, t | 11,977.24 | 13,816.06 | 11,977.24 |
Outfit Weight, t | 1,698.17 | 1698.17 | 1698.17 |
Displacement, t | 116,226.83 | 116,226.83 | 114,342.04 |
Propulsion Power, kW | 8628.46 | 8628.46 | 8534.93 |
Deadweight, t | 101,958.79 | 100,119.97 | 100 079.78 |
Daily Fuel Consumption, t | 39.55 | 39.55 | 39.12 |
Cargo Deadweight, t | 100,488.69 | 84,839.59 | 98,624.56 |
Port Days | 26.12 | 22.21 | 25.66 |
Round Trips per Year | 8.30 | 9.15 | 8.40 |
Ship Cost, € | 18,721,159.38 | 20,717,152.62 | 18,683,007.96 |
Annual Cost, € | 6,100,450.23 | 6,595,162.89 | 6,083,896.39 |
Required EEDI | 3.16 | 3.20 | 3.17 |
Attained EEDI | 2.76 | 2.78 | 2.77 |
DS1 | DS2 | |
---|---|---|
Steel weight, tonne | 8784.65 | 11,052.85 |
Aluminium weight, tonne | 429.38 | / |
DC, €/tonne | 135.5 | 124.0 |
DC, € | 1,248,907.9 | 1,370,130.2 |
DS1 | DS2 | |
---|---|---|
% Saleable materials | 70% | 70% |
Saleable steel weight, tonne | 6149.3 | 7737.0 |
Saleable aluminium weight, tonne | 300.6 | - |
DRC, € | −2,193,340.2 | −1,538,979.9 |
Case | Description | Energy Consumption, Epi, MJ | Carbon Footprint, Cpi, tonnesCO2 |
---|---|---|---|
1 | Complete steel solution (primary production) | 242,057,415 | 21,774 |
2 | Hybrid solution (primary production) | 192,383,835 | 23,017 |
3 | Complete steel solution (secondary production) | 129,318,345 | 7737 |
4 | Hybrid solution (secondary production) | 104,927,305 | 6407 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomba, G.; Scattareggia Marchese, S.; Crupi, V.; Garbatov, Y. Cost, Energy Efficiency and Carbon Footprint Analysis of Hybrid Light-Weight Bulk Carrier. J. Mar. Sci. Eng. 2022, 10, 957. https://doi.org/10.3390/jmse10070957
Palomba G, Scattareggia Marchese S, Crupi V, Garbatov Y. Cost, Energy Efficiency and Carbon Footprint Analysis of Hybrid Light-Weight Bulk Carrier. Journal of Marine Science and Engineering. 2022; 10(7):957. https://doi.org/10.3390/jmse10070957
Chicago/Turabian StylePalomba, Giulia, Simone Scattareggia Marchese, Vincenzo Crupi, and Yordan Garbatov. 2022. "Cost, Energy Efficiency and Carbon Footprint Analysis of Hybrid Light-Weight Bulk Carrier" Journal of Marine Science and Engineering 10, no. 7: 957. https://doi.org/10.3390/jmse10070957
APA StylePalomba, G., Scattareggia Marchese, S., Crupi, V., & Garbatov, Y. (2022). Cost, Energy Efficiency and Carbon Footprint Analysis of Hybrid Light-Weight Bulk Carrier. Journal of Marine Science and Engineering, 10(7), 957. https://doi.org/10.3390/jmse10070957