Contourite and Turbidite Features in the Middle Caspian Sea and Their Connection to Geohazards Derived from High-Resolution Seismic Data
Abstract
:1. Introduction
2. Regional Settings
2.1. Geological Setting
2.2. Sedimentation Setting
2.3. Hydrological Settings
2.4. Stratigraphy Setting
3. Materials and Methods
3.1. High-Resolution Seismic Reflection Profiling (Sparker)
3.2. Ultra-High-Resolution Parametric Profiling (SES UHR)
4. Results
4.1. Western (Derbent) Slope
4.2. Northern Slope (Mangyshlak Sill)
4.3. Southern Slope (Apsheron Sill)
4.4. Eastern Slope
5. Discussion
5.1. Genesis of Wavy Features
5.2. Contourite Sedimentary Drifts
5.3. Middle Caspian Contourite Depositional Complex
5.4. Geohazards
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duarte, C.S.L.; Viana, A.R. Santos Drift System: Stratigraphic organization and implications for late Cenozoic palaeocirculation in the Santos Basin, SW Atlantic Ocean. In Economic and Palaeoceanographic Significance of Contourite Deposits; Viana, A.R., Rebesco, M., Eds.; Geological Society, Special Publications: London, UK, 2007; Volume 276, pp. 171–198. [Google Scholar]
- Rebesco, M.; Camerlenghi, A. (Eds.) Contourites; Elsevier: Amsterdam, The Netherlands, 2008; p. 666. [Google Scholar]
- Rebesco, M.; Hernández-Molina, F.J.; Van Rooij, D.; Wåhlin, A. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. Mar. Geol. 2014, 352, 111–154. [Google Scholar] [CrossRef] [Green Version]
- Ceramicola, S.; Rebesco, M.; De Batist, M.; Khlystov, O. Seismic evidence of small-scale lacustrine drifts in Lake Baikal (Russia). Mar. Geophys. Res. 2001, 22, 445–464. [Google Scholar] [CrossRef]
- Levchenko, O.V.; Roslyakov, A.G.; Polyakov, A.S.; Zverev, A.S.; Merklin, L.R. New data about sedimentary waves on western continental slope of the Caspian Sea. Dokl. Earth Sci. 2008, 420, 537–542. [Google Scholar] [CrossRef]
- Levchenko, O.; Putans, V.; Borisov, D. Contourites in the Middle Caspian Sea? In Proceedings of the 2nd Deep-Water Circulation Congress, Ghent, Belgium, 10–12 September 2014; pp. 65–66. Available online: https://www.vliz.be/imisdocs/publications/264048.pdf (accessed on 10 May 2022).
- Levchenko, O.V.; Putans, V.A.; Borisov, D.G. Contourites in the Derbent Basin, Caspian Sea (Geophysical Data). Dokl. Earth Sci. 2018, 482, 1239–1243. [Google Scholar] [CrossRef]
- Putans, V.A.; Levchenko, O.V.; Borisov, D.V. Circum Middle Caspian Contourite Depositional Complex. In Abstracts of the VIII Simposio MIA15; Universidad de Málaga: Malaga, Spain, 2015. [Google Scholar]
- Maev, E.G. Exogenous Folding in Quaternary Deposits of the Continental Slope of the Caspian Sea. Dokl. Earth Sci. 1999, 365, 323–325. [Google Scholar]
- Verzhbitsky, V.E.; Levchenko, O.V.; Lobkovsky, L.I. New Data on Quaternary Processes of Underwater Slumping on the Western Slope of the Derbent Basin (Caspian Sea). Dokl. Earth Sci. 2007, 416, 1085–1089. [Google Scholar] [CrossRef]
- Verzhbitsky, V.E.; Lobkovsky, L.I.; Roslyakov, A.G.; Merklin, L.R.; Polyakov, A.S.; Levchenko, O.V.; Kovachev, S.A.; Zverev, A.S.; Garagash, I.A.; Mar, G.N. Slump Structures in Quaternary Slope Sediments of the Northern Derbent Basin (Caspian Sea). Oceanology 2009, 49, 396–404. [Google Scholar] [CrossRef]
- Mir, N. English Version of Explanatory Notes of International Tectonic Map of the Caspian Sea Region; Scale 1:2, 500,000; Khain, V.Y., Bogdanov, N.A., Eds.; Russian Academy of Science: Moscow, Russia, 2005. [Google Scholar]
- Hinds, D.J.; Aliyeva, E.; Allen, M.B.; Davies, C.E.; Kroonenberg, S.B.; Simmons, M.D.; Vincent, S.J. Sedimentation in a diascharge dominated fluvial-lacustrine system: The Neogene Productive Series of the South Caspian Basin, Azerbaijan. Mar. Pet. Geol. 2004, 20, 613–638. [Google Scholar] [CrossRef]
- Leroy, S.A.G.; Lahijani, H.A.; Cretaux, J.-F.; Aladin, N.V.; Plotnikov, I.S. Past and current changes in the largest lake of the World: The Caspian Sea. In Large Asian Lakes in a Changing World. Springer Water; Mischke, S., Ed.; Springer: Cham, Switzerland, 2020; pp. 65–107. [Google Scholar] [CrossRef]
- Arpe, K.; Bengtsson, L.; Golitsyn, G.S.; Mokhov, I.I.; Semenov, V.A.; Sporyshev, P.V. Connection between Caspian Sea level variability and ENSO. Geophys. Res. Lett. 2000, 27, 2693–2696. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, L.I. Structure of upper part of sedimentary cover according to geoacoustical profiling. In Caspian Sea: Geology and Oil and Gas Resources; Nauka: Moscow, Russia, 1987; pp. 105–114. [Google Scholar]
- Kostyanoy, A.G.; Kosarev, A.N. The Caspian Sea Environment; Springer: Berlin, Germany, 2005. [Google Scholar]
- Ivanova, T.P.; Trifonov, V.G. Seismotectonics and modern regime of Caspian Sea level fluctuations. Geotectonics 2002, 2, 27–42. [Google Scholar]
- Yutsis, V.V.; Kalinin, V.V. Pliocene-Quaternary geodynamics of the Apsheron shelf of the Caspian Sea revealed by geological-geophysical data. In Proceedings of the Geodynamic Basis of Prognostication of Oil and Gas, Moscow, Russia, 6–8 September 1988. [Google Scholar]
- Leonov, Y.G.; Antipov, M.P.; Bobylova, E.E.; Volozh, Y.A.; Lavrushin, Y.A.; Spiridonova, E.A. Geological History of Quaternary Sedimentary Basins within Caspian Region during Last 700,000 Years: Sedimentation Its Water Regimen and Geodynamics Events [Comments to “Map of Quaternary (Neo Pleistocene) Sediments within Caspian Area with Elements of Paleogeography”, Scale 1:2,500,000]; Scientific World: Moscow, Russia, 2005; Volume 3. (In Russian) [Google Scholar]
- Chen, J.L.; Pekker, T.; Wilson, C.R.; Tapley, B.D.; Kostianoy, A.G.; Cretaux, J.-F.; Safarov, E.S. Long-term Caspian Sea level change. Geophys. Res. Lett. 2017, 44, 6993–7001. [Google Scholar] [CrossRef]
- Golubov, B.N.; Ismagilov, D.F. Pipe-looking structures under the Northern Caspian fluid regime. In Proceedings of the All-Russia Conference of Oil and Gas Genesis, Moscow, Russia, 15–18 April 2003; pp. 78–80. [Google Scholar]
- Kosarev, A.N.; Kostyanoy, A.G.; Zonn, I.S. Kara-Bogas-Gol Bay: Physical and chemical evolution. Aquat. Geochem. 2009, 15, 223–236. [Google Scholar] [CrossRef]
- Leonov, Y.G.; Antipov, M.P.; Volozh, Y.A. Geological Aspects of Caspian Sea Level Fluctuations. In Global Changes of Environment; Siberian RAS: Novosibirsk, Russia, 1988; pp. 30–57. [Google Scholar]
- Kravchishina, M.D.; Novigatskii, A.N.; Politova, N.V.; Zernova, V.V.; Mosharov, S.A.; Dara, O.M.; Klyuvitkin, A.A. Studying the biogenic and abiogenic parts of suspended particulate matter in the Volga delta during spring flood of May 2008. Water Resour. 2013, 40, 143–156. [Google Scholar] [CrossRef]
- Kozina, N.V.; Putas, V.A.; Zhdan, M.I. Elaboration of sediment transport pathways by integrated interpretation of geological and high-resolution seismoacoustic data (Caspian Sea). In Proceedings of the Dialogue between Contourite and Oceanology Processes International Workshop; Hull, UK, 28–26 January 2013, 2013; p. 34. [Google Scholar]
- Lahijani, H.; Abbasian, H.; Naderi-Beni, A.; Leroy, S.A.G.; Haghani, S.; Habibi, P.; Hosseindustn, M.; Shahkeremi, S.; Yeganeh, S.; Zandinasab, Z.; et al. Sediment distribution pattern of South Caspian Sea: Possible hydroclimatic implications. Can. J. Earth Sci. 2018, 56, 637–653. [Google Scholar] [CrossRef]
- Kosarev, A.N. Hydrology of the Caspian and Aral Seas; Moscow State University: Moscow, Russia, 1975; p. 372. [Google Scholar]
- Terziev, F.S.; Kosarev, A.N.; Kerimov, A.A. Hydrometeorology and Hydrochemistry of Seas; Caspian Sea, Hydrometeorological Conditions, Gidrometeoizdat: St. Petersburg, Russia, 1992; Volume 6. (In Russian) [Google Scholar]
- Ghaffari, P.; Lahijani, H.A.K.; Azizpour, J. Snapshot observation of the physical structure and stratufucation in deep-water of the South Caspian Sea (western part). Ocean Sci. 2010, 6, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Sapozhnikov, V.V.; Mordasova, N.V.; Metreveli, M.P. Transformations in the Caspian Sea ecosystem under the fall and rise of the sea level. Oceanology 2010, 50, 488–497. [Google Scholar] [CrossRef]
- Glumov, I.F.; Malovitsky, Y.P.; Novikov, A.A.; Senin, B.V. Regional Geology and Oil and Gas Content of the Caspian Sea; Nedra: Moscow, Russia, 2004; p. 342. (In Russian) [Google Scholar]
- Ambrosimov, A.K.; Ambrosimov, E.C.; Libina, N.V. Dynamic structure of currents near western slope of the Derbent Basin in the Caspian Sea. Eng. Phys. 2010, 10, 31–45. [Google Scholar]
- Ambrosimov, A.K.; Klyuvitkin, A.A.; Lisitsyn, A.P. Season variations of currents over the western slope of the middle Caspian bed. Water Resour. 2018, 45, 685–694. [Google Scholar] [CrossRef]
- Kroonenberg, S.B.; Badyukova, E.N.; Storms, J.E.A.; Ignatov, E.I.; Kasimov, N.S. A full sea-level cycle in sixty-five years: Barrier dynamics along Caspian shores. Sediment. Geol. 2000, 134, 257–274. [Google Scholar] [CrossRef]
- Hoogendoorn, R.M.; Boels, J.F.; Kroonenberg, S.B.; Simmons, M.D.; Aliycva, E.; Babazadeh, A.D.; Huseynov, D. Development of the Kura delta, Azerbaijan; a record of Holocene Caspian Sea level changes. Mar. Geol. 2005, 222–223, 359–380. [Google Scholar] [CrossRef]
- Klige, R.K.; Myagkov, M.S. Changes in the water regime of the Caspian Sea. GeoJournal 1992, 27, 299–307. [Google Scholar] [CrossRef]
- Meshcherskaya, A. Analysis of global climatic characteristics in relation to Caspian Sea Level. In TA-CIS/Caspian Environmental Programme, Report WLF; Centre for Water Level Change: Almaty, Kazakhstan, 2001; p. 63. (In Russian) [Google Scholar]
- Kroonenberg, S.B.; Abdurakhmanov, G.M.; Badyukova, E.N.; van der Borg, K.; Kalashnikov, A.; Kasimov, N.S.; Rychagov, G.I.; Svitoch, A.A.; Vonhof, H.B.; Wesselingh, F.P. Solar-forced 2600 BP and Little Ice Age Highstands of the Caspian Sea. Methods Ecol. Res. South Russ. Ecol. Dev. 2008, 173–174, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Putans, V.A.; Merklin, L.R.; Levchenko, O.V. Sediment waves and other forms as evidence of geohazards (Caspian Sea). Int. J. Offshore Polar Eng. 2010, 20, 1–4. [Google Scholar]
- Putans, V.A. Sediment waves: Geohazard or geofeature? Hydro Int. 2013, 10, 25–29. [Google Scholar]
- Levchenko, O.V.; Roslyakov, A.G. Cyclic sediment waves on western slope of the Caspian Sea as possible indicators of main transgressive/regressive events. Quat. Int. 2010, 225, 210–220. [Google Scholar] [CrossRef]
- Levchenko, O.V.; Gainanov, V.G.; Merklin, L.R.; Polyakov, A.S.; Roslyakov, A.G. New data about seismic stratigraphy and sedimentological proscesses over western continental slope of the Middle Caspian Sea. Dokl. Earth Sci. 2006, 355, 671–673. [Google Scholar]
- Gerivani, H.; Putans, V.A.; Merklin, L.R.; Modarres, M.H. Characteristics of features formed by gas hydrate and free gas in the continental slope and abyssal plain of the Middle Caspian Sea. Mar. Georesourc. Geotechnol. 2020, 39, 419–430. [Google Scholar] [CrossRef]
- Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science 2017, 356, 948–953. [Google Scholar] [CrossRef] [Green Version]
- Nixon, F.C.; Chand, S.; Thorsnes, T.; Bjarnadóttir, L.R. A modified gas hydrate-geomorphological model for a new discovery of enigmatic craters and seabed mounds in the Central Barents Sea, Norway. Geo-Mar. Lett. 2019, 39, 191–203. [Google Scholar] [CrossRef]
- Nutz, A.; Schuster, M.; Ghienne, J.-F.; Roquin, C.; Hay, M.B.; Retif, F.; Certain, R.; Robin, N.; Raynal, O.; Cousineau, P.A.; et al. Current-controlled Sedimentary Features into Lake Saint-Jean (Québec, Canada): A Record of Wind-driven Processes? In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 2014.
- Nutz, A.; Ghienne, J.-F.; Schuster, M.; Certain, R.; Robin, N.; Roquin, C.; Raynal, O.; Bouchette, F.; Duringer, P.; Cousineau, P.A. Seismic-stratigraphic record of a deglaciation sequence: From the marine Laflamme Gulf to Lake Saint-Jean (late Quaternary, Québec, Canada). BOREAS 2014, 43, 309–329. [Google Scholar] [CrossRef]
- Giressea, P.; Maley, J.; Kossoni, A. Sedimentary environmental changes and millennial climatic variability in a tropical shallow lake (Lake Ossa, Cameroon) during the Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 218, 257–285. [Google Scholar] [CrossRef]
- Thomas, R.L.; Dell, C.I. Sediments of Lake Superior. J. Great Lakes Res. 1978, 4, 264–275. [Google Scholar] [CrossRef]
- Tonello, M.S.; Hebner, T.S.; Sterner, R.W. Geochemistry and mineralogy of southwestern Lake Superior sediments with an emphasis on phosphorus lability. J. Soils Sediments 2020, 20, 1060–1073. [Google Scholar] [CrossRef]
- Putans, V.A.; Merklin, L.R.; Zelenin, E.A. Signs of modern tectonic events in Late-Quaternary sediments of middle Caspian. Adv. Curr. Nat. Sci. 2018, 4, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Ambrosimov, A.K.; Klyuvitkin, A.A.; Kozina, N.V.; Kravchishina, M.D.; Libina, N.V.; Filippov, A.S.; Artamonova, K.V.; Torgunova, N.I.; Baranov, V.I.; Pol’kin, V.V. Complex studies of the Caspian Sea system during the 41st cruise of the R/V Rift. Oceanology 2014, 54, 671–676. [Google Scholar] [CrossRef]
- Lee, H.J.; Syvitski, J.P.M.; Parker, G.; Orange, D.; Locat, J.; Hutton, E.W.H.; Imran, J. Distinguishing sediments waves from slope failure deposits: Field examples, including the “Humboldt slide”, and modeling results. Mar. Geol. 2002, 192, 79–104. [Google Scholar] [CrossRef]
- Normark, W.R.; Piper, D.J.W.; Posamentier, H.; Pirmez, C.; Migeon, S. Variability in form and growth of sediment waves on turbidity channel levees. Mar. Geol. 2002, 192, 23–58. [Google Scholar] [CrossRef]
- Cattaneo, A.; Correggiari, A.; Marsset, T.; Thomas, Y.; Marsset, B.; Trincardi, F. Seafloor undulation pattern on the Adriatic shelf and comparison to deep-water sediment waves. Mar. Geol. 2004, 213, 121–148. [Google Scholar] [CrossRef]
- Wynn, R.B.; Piper, D.J.; Gee, W.; Martin, J.R. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel lobe transition zones. Mar. Geol. 2002, 192, 59–78. [Google Scholar] [CrossRef]
- Wynn, R.B.; Stow, D.A.V. Classification and characterization of deep-water sediment waves. Mar. Geol. 2002, 192, 7–22. [Google Scholar] [CrossRef]
- Hernandez-Molina, F.J.; Stow, D.A.V. Continental slope contourites. In Contourites: Developments in Sedimentology 60; Rebesco, M., Camerlenghi, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 379–408. [Google Scholar]
- Rebesco, M. Contourites. In Encyclopedia of Geology; Selley, R.C., Cocks, L.R.M., Plimer, I.R., Eds.; Elsevier: Oxford, UK, 2005; pp. 513–527. [Google Scholar]
- Ivanov, A.Y.; Golubov, B.N.; Zatyagalova, V.V. On oil and gas potential and subsoil fluid discharge in southern part of Caspian Sea by satellite geolocation data. Earth Satell. Res. 2007, 2, 62–81. [Google Scholar]
- Hernandez-Molina, F.J.; Paterlini, M.; Violante, R.; Marshall, P.; de Isasi, M.; Samoza, L.; Rebesco, M. Contourite depositional system on the Argentine slope: An exceptional record of the influence of Antarctic water masses. Geology 2009, 37, 507–510. [Google Scholar] [CrossRef]
- Viana, A.R.; Almeida, J.R.W.; Nunes, M.C.V.; Bulhoes, E.M. The economic importance of contourites. In Economic and Palaeoceanographic Significance of Contourite Deposits; Viana, A.R., Rebesco, M., Eds.; Geological Society, Special Publications: London, UK, 2007; Volume 276, pp. 1–23. [Google Scholar]
- Roy, S.; Hovland, M.; Braathen, A. Evidence of fluid seepage in Grønfjorden, Spitsbergen: Implications from an integrated acoustic study of seafloor morphology, marine sediments and tectonics. Mar. Geol. 2016, 380, 67–78. [Google Scholar] [CrossRef]
- Hovland, M.; Gardner, J.V.; Judd, A.G. The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2002, 2, 127–136. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yutsis, V.; Levchenko, O.; Putans, V. Contourite and Turbidite Features in the Middle Caspian Sea and Their Connection to Geohazards Derived from High-Resolution Seismic Data. J. Mar. Sci. Eng. 2022, 10, 990. https://doi.org/10.3390/jmse10070990
Yutsis V, Levchenko O, Putans V. Contourite and Turbidite Features in the Middle Caspian Sea and Their Connection to Geohazards Derived from High-Resolution Seismic Data. Journal of Marine Science and Engineering. 2022; 10(7):990. https://doi.org/10.3390/jmse10070990
Chicago/Turabian StyleYutsis, Vsevolod, Oleg Levchenko, and Victoria Putans. 2022. "Contourite and Turbidite Features in the Middle Caspian Sea and Their Connection to Geohazards Derived from High-Resolution Seismic Data" Journal of Marine Science and Engineering 10, no. 7: 990. https://doi.org/10.3390/jmse10070990
APA StyleYutsis, V., Levchenko, O., & Putans, V. (2022). Contourite and Turbidite Features in the Middle Caspian Sea and Their Connection to Geohazards Derived from High-Resolution Seismic Data. Journal of Marine Science and Engineering, 10(7), 990. https://doi.org/10.3390/jmse10070990