Multi-Objective Optimization of Deep-Sea Mining Pump Based on CFD, GABP Neural Network and NSGA-III Algorithm
Abstract
:1. Introduction
2. Structure and Key Parameters of Deep-Sea Mining Pump
3. Numerical Simulation and Experimental Validation
3.1. Basic Assumptions
- (1)
- The physical characteristics of solids and liquids are steady, and there are no phase changes.
- (2)
- Fluids are incompressible
- (3)
- The conveyed particles are spherical, uniformly sized particles.
3.2. Boundary Conditions and Computational Settings
3.3. Modeling and Meshing of Flow Domain
3.4. Experimental Verification in Clean Water Conditions
3.5. Experimental Verification in Solid-Liquid Two-Phase Flow Conditions
4. Approximate Model of Hydraulic Performance Using GABP Neural Network
4.1. Design Variables Selection
4.2. Establishing Sample Database
4.3. Fitting and Prediction of GABP Neural Network
5. Multi-Objective Optimization Based on NSGA-III
6. Results and Discussion
6.1. Pareto Optimal Frontiers Analysis
6.2. Comparative Analysis in Clear Water Conditions
6.3. Comparative Analysis in Solid-Liquid Two-Phase Flow Conditions
7. Conclusions
- (1)
- The relative errors of the head, shaft power, and efficiency of the CFD numerical simulation under clear water conditions are within 4.87%. The relative error of the head of the CFD-DPM simulation under solid-liquid two-phase flow conditions is 3.33% at most. The numerical simulation approach is regarded as credible and can be utilized to guide the optimization of deep-sea mining pumps.
- (2)
- The mean relative errors of the GABP neural network for the head, shaft power, and efficiency prediction were 0.31%, 0.73%, and 0.34%, respectively, which were significantly reduced compared with the BP neural network. Therefore, it is effective to enhance the prediction performance of the BP neural network by optimizing the weights and thresholds through the GA.
- (3)
- The results of the NSGA-III multi-objective search are evenly distributed in the region of the superior overall performance of the pump. The impeller outlet width and inlet blade angle of the diffuser of the final optimized deep-sea mining pump were increased, and the average outlet diameter of the impeller and outlet blade angle of the impeller were reduced. Under rated clear water conditions, the final optimized pump has a reduction in shaft power of 100,607 W (14.65%) and an increase in efficiency of 6.04% while meeting the design requirements for the head. The flow field in the pump is significantly improved, with fewer vortices and lower turbulent kinetic energy loss. Under rated solid-liquid two-phase flow conditions, the head still meets the design requirements, the shaft power is reduced by 113,730 W (15.64%), and the efficiency is increased by 6.00%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
395.28 | 66.87 | 22.85 | 13.35 |
395.81 | 71.13 | 26.74 | 12.05 |
396.01 | 65.97 | 37.95 | 15.95 |
396.58 | 69.30 | 29.64 | 18.40 |
397.33 | 62.16 | 35.24 | 9.76 |
397.81 | 62.62 | 17.09 | 16.25 |
398.42 | 62.43 | 30.74 | 16.69 |
398.89 | 64.12 | 16.19 | 18.22 |
399.12 | 67.58 | 20.68 | 15.64 |
399.73 | 73.97 | 33.36 | 17.36 |
400.25 | 69.07 | 22.94 | 12.72 |
400.63 | 70.06 | 17.79 | 9.60 |
401.36 | 63.16 | 17.99 | 19.82 |
401.86 | 71.00 | 32.80 | 8.66 |
402.23 | 69.80 | 25.90 | 15.28 |
402.56 | 68.50 | 22.20 | 14.51 |
403.08 | 73.02 | 27.46 | 10.16 |
403.86 | 65.69 | 15.74 | 10.84 |
404.44 | 70.63 | 23.34 | 8.44 |
404.62 | 66.71 | 16.74 | 16.47 |
405.36 | 60.47 | 18.34 | 9.31 |
405.53 | 67.45 | 36.71 | 17.88 |
406.29 | 68.42 | 25.12 | 11.23 |
406.95 | 61.49 | 27.74 | 14.28 |
407.28 | 64.76 | 31.18 | 16.01 |
407.75 | 74.12 | 25.72 | 13.65 |
408.05 | 64.46 | 19.45 | 19.23 |
408.69 | 70.39 | 35.57 | 10.36 |
409.08 | 72.95 | 39.92 | 17.56 |
409.84 | 66.12 | 39.40 | 11.11 |
410.05 | 61.79 | 24.82 | 12.82 |
410.85 | 60.89 | 19.62 | 14.18 |
411.31 | 65.09 | 27.92 | 11.80 |
411.63 | 74.37 | 34.77 | 13.53 |
412.12 | 66.29 | 26.27 | 14.94 |
412.70 | 68.76 | 28.89 | 12.47 |
413.15 | 73.72 | 38.36 | 18.89 |
413.53 | 60.15 | 36.08 | 13.85 |
414.41 | 63.80 | 31.70 | 11.58 |
414.72 | 74.74 | 34.32 | 9.07 |
415.36 | 61.22 | 20.98 | 16.86 |
415.75 | 60.73 | 32.95 | 9.86 |
416.11 | 74.93 | 39.08 | 10.55 |
416.76 | 72.07 | 28.47 | 18.05 |
417.24 | 65.28 | 18.82 | 19.42 |
417.80 | 67.80 | 32.32 | 15.16 |
418.35 | 72.49 | 30.21 | 8.20 |
418.83 | 61.66 | 37.32 | 17.04 |
419.05 | 63.70 | 15.08 | 8.85 |
419.53 | 63.43 | 29.23 | 19.16 |
420.22 | 71.72 | 24.41 | 17.73 |
420.74 | 67.09 | 16.28 | 18.75 |
421.03 | 73.45 | 37.80 | 12.28 |
421.52 | 64.67 | 23.98 | 11.63 |
422.22 | 62.94 | 36.66 | 19.71 |
422.74 | 72.00 | 21.40 | 15.42 |
423.36 | 72.72 | 20.26 | 13.11 |
423.56 | 68.10 | 22.08 | 14.77 |
424.17 | 69.61 | 31.43 | 10.75 |
424.83 | 71.42 | 34.05 | 8.26 |
References
- United Nations Office of Legal Affairs; International Seabed Authority. Marine Mineral Resources: Scientific Advances and Economic Perspectives; United Nations: New York, NY, USA, 2004; pp. 58–62. [Google Scholar]
- Kang, Y.J.; Liu, S.J. The Development History and Latest Progress of Deep-Sea Polymetallic Nodule Mining Technology. Minerals 2021, 11, 17. [Google Scholar] [CrossRef]
- Deng, L.W.; Hu, Q.; Chen, J.; Kang, Y.J.; Liu, S.J. Particle Distribution and Motion in Six-Stage Centrifugal Pump by Means of Slurry Experiment and CFD-DEM Simulation. J. Mar. Sci. Eng. 2021, 9, 19. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, J.; Deng, L.W.; Kang, Y.J.; Liu, S.J. CFD-DEM Simulation of Backflow Blockage of Deep-Sea Multistage Pump. J. Mar. Sci. Eng. 2021, 9, 19. [Google Scholar] [CrossRef]
- Kang, Y.J.; Liu, S.J.; Zou, W.S.; Zhao, H.; Hu, X.Z. Design and analysis of an innovative deep-sea lifting motor pump. Appl. Ocean Res. 2019, 82, 22–31. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, S.; Hu, X.; Dai, Y.; IEEE. Numerical and Experimental Investigation of a Multistage Electric Lifting Pump for Deep-sea Mining. In Proceedings of the 3rd International Conference on Smart City and Systems Engineering (ICSCSE), Xiamen, China, 28–30 December 2018; pp. 457–462. [Google Scholar]
- Oh, H.W.; Chung, M.K. Optimum values of design variables versus specific speed for centrifugal pumps. Proc. Inst. Mech. Eng. Part A-J. Power Energy 1999, 213, 219–226. [Google Scholar] [CrossRef]
- Oh, H.W.; Kim, K.Y. Conceptual design optimization of mixed-flow pump impellers using mean streamline analysis. Proc. Inst. Mech. Eng. Part A-J. Power Energy 2001, 215, 133–138. [Google Scholar] [CrossRef]
- Yang, J.H.; Bian, Z.; Zhong, C.L.; Li, J.C. Method for Selecting Centrifugal Pump Impeller Outlet Angle Based on Calculation of Centrifugal Pump Impeller’s Hydraulic Loss. J. Xi Hua Univ. 2016, 35, 89. [Google Scholar]
- Pei, J.; Yin, T.Y.; Yuan, S.Q.; Wang, W.J.; Wang, J.B. Cavitation optimization for a centrifugal pump impeller by using orthogonal design of experiment. Chin. J. Mech. Eng. 2017, 30, 103–109. [Google Scholar] [CrossRef]
- Ayremlouzadeh, H.; Jafarmadar, S.; Niaki, S.R.A. Investigation on the Effect of Impeller Design Parameters on Performance of a Low Specific Speed Centrifugal Pump Using Taguchi Optimization Method. Int. J. Fluid Power 2022, 23, 161–182. [Google Scholar] [CrossRef]
- Heo, M.W.; Kim, K.Y.; Kim, J.H.; Choi, Y.S. High-efficiency design of a mixed-flow pump using a surrogate model. J. Mech. Sci. Technol. 2016, 30, 541–547. [Google Scholar] [CrossRef]
- Hong, S.; Hu, X. Optimization of impeller of deep-sea mining pump for erosive wear reduction based on response surface methodology. Mar. Georesources Geotechnol. 2022, 1–17. [Google Scholar] [CrossRef]
- Coello, C.A.C. Evolutionary multi-objective optimization: Some current research trends and topics that remain to be explored. Front. Comput. Sci. China 2009, 3, 18–30. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- von Lucken, C.; Baran, B.; Brizuela, C. A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 2014, 58, 707–756. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Safikhani, H.; Derakhshan, S. The comparison of multi-objective particle swarm optimization and NSGA II algorithm: Applications in centrifugal pumps. Eng. Optim. 2011, 43, 1095–1113. [Google Scholar] [CrossRef]
- Gan, X.; Pei, J.; Wang, W.; Yuan, S.; Lin, B. Application of a modified MOPSO algorithm and multi-layer artificial neural network in centrifugal pump optimization. Eng. Optim. 2022, 1–19. [Google Scholar] [CrossRef]
- Gan, X.; Wang, W.; Pei, J.; Yuan, S.; Tang, Y.; Osman, M.K. Direct Shape Optimization and Parametric Analysis of a Vertical Inline Pump via Multi-Objective Particle Swarm Optimization. Energies 2020, 13, 425. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Zhu, H.W.; Yang, C.; Li, Y.; Wei, H.A. Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN. Energy Convers. Manag. 2011, 52, 538–546. [Google Scholar] [CrossRef]
- Shojaeefard, M.H.; Hosseini, S.E.; Zare, J. CFD simulation and Pareto-based multi-objective shape optimization of the centrifugal pump inducer applying GMDH neural network, modified NSGA-II, and TOPSIS. Struct. Multidiscip. Optim. 2019, 60, 1509–1525. [Google Scholar] [CrossRef]
- Xu, K.; Wang, G.; Zhang, L.Y.; Wang, L.Q.; Yun, F.H.; Sun, W.H.; Wang, X.Y.; Chen, X. Multi-Objective Optimization of Jet Pump Based on RBF Neural Network Model. J. Mar. Sci. Eng. 2021, 9, 18. [Google Scholar] [CrossRef]
- Gandhi, B.K.; Singh, S.N.; Seshadri, V. Effect of Speed on the Performance Characteristics of a Centrifugal Slurry Pump. J. Hydraul. Eng. 2002, 128, 225–233. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. -Trans. Asme 2008, 130, 078001. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Luo, X.; Guo, P.; Wu, G. Influence of tip clearance on pressure fluctuations in an axial flow pump. J. Mech. Sci. Technol. 2016, 30, 1603–1610. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, M.; Gao, B.; Li, Z.; Ni, D. Investigation of Rotor-Stator Interaction and Flow Unsteadiness in a Low Specific Speed Centrifugal Pump. Stroj. Vestn. -J. Mech. Eng. 2016, 62, 22–31. [Google Scholar] [CrossRef]
- Shields, M.D.; Zhang, J. The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf. 2016, 148, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Deb, K. Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evol. Comput. 1999, 7, 205–230. [Google Scholar] [CrossRef]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
Structure of Impeller | Parameter | Structure of Diffuser | Parameter |
---|---|---|---|
Number of blades Z1 | 4 | Number of blades Z2 | 5 |
Blade outlet width b2 | 60 mm | Blade inlet width b3 | 62 mm |
Inlet diameter D1 | 235 mm | Maximum diameter of the internal streamline D3 | 395 mm |
Average outlet diameter D2m | 410 mm | Maximum diameter of the external streamline D4 | 516 mm |
Outlet blade thickness δ2 | 15 mm | Outlet diameter D5 | 235 mm |
Blade wrap angle ϕ1 | 110° | Inlet blade thickness δ3 | 7 mm |
Inlet blade angle β1 | 35° | Blade wrap angle ϕ2 | 95.5° |
Outlet blade angle β2 | 32.5° | Inlet blade angle α3 | 12° |
Shaft diameter d | 95 mm | Outlet blade angle α4 | 85° |
Number of Meshes | Head (m) | Shaft Power (W) | Efficiency (%) |
---|---|---|---|
1,911,196 | 308.72 | 798,476 | 44.17 |
4,673,330 | 305.36 | 756,628 | 45.99 |
8,042,426 | 300.47 | 738,391 | 46.49 |
10,924,128 | 297.70 | 687,891 | 49.44 |
13,808,964 | 297.87 | 691,724 | 49.20 |
Head (m) | Shaft Power (W) | Efficiency (%) | |
---|---|---|---|
Experimental Results | 292.50 | 656,672 | 50.89 |
CFD Simulated Results | 297.85 | 686,866 | 49.54 |
Relative Errors | 1.83% | 4.60% | 2.65% |
Volume Flow (m3/h) | Volume Concentration of Particles (%) | Head of Experiment Results (m) | Head of CFD-DPM Simulated Results (m) | Relative Errors (%) |
---|---|---|---|---|
429.41 | 3.56 | 99.08 | 100.05 | 0.98 |
452.90 | 4.69 | 98.8 | 97.68 | 1.13 |
468.31 | 5.52 | 97.14 | 97.17 | 0.03 |
425.42 | 9.01 | 99.42 | 96.11 | 3.33 |
Number | D2m (mm) | b2 (mm) | δ2 (mm) | β2 (°) | b3 (mm) | δ3 (mm) | α3(°) | X1 | X2 | X3 | X4 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 420 | 72 | 10 | 40 | 72 | 10 | 8 | −1 | −1 | 1 | −1 |
2 | 400 | 72 | 20 | 20 | 72 | 10 | 20 | −1 | −1 | −1 | 1 |
3 | 420 | 60 | 20 | 40 | 60 | 10 | 20 | 1 | −1 | −1 | −1 |
4 | 400 | 72 | 10 | 40 | 72 | 5 | 20 | 1 | 1 | −1 | −1 |
5 | 400 | 60 | 20 | 20 | 72 | 10 | 8 | 1 | 1 | 1 | −1 |
6 | 400 | 60 | 10 | 40 | 60 | 10 | 20 | −1 | 1 | 1 | 1 |
7 | 420 | 60 | 10 | 20 | 72 | 5 | 20 | 1 | −1 | 1 | 1 |
8 | 420 | 72 | 10 | 20 | 60 | 10 | 8 | 1 | 1 | −1 | 1 |
9 | 420 | 72 | 20 | 20 | 60 | 5 | 20 | −1 | 1 | 1 | −1 |
10 | 400 | 72 | 20 | 40 | 60 | 5 | 8 | 1 | −1 | 1 | 1 |
11 | 420 | 60 | 20 | 40 | 72 | 5 | 8 | −1 | 1 | −1 | 1 |
12 | 400 | 60 | 10 | 20 | 60 | 5 | 8 | −1 | −1 | −1 | −1 |
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Head (m) | 325.46 | 275.29 | 308.87 | 293.66 | 262.79 | 279.34 | 290.55 | 309.9 | 301.02 | 304.76 | 299.5 | 271.25 |
Shaft Power (W) | 786,792 | 618,388 | 698,590 | 780,995 | 498,929 | 617,009 | 604,301 | 676,644 | 675,001 | 662,310 | 669,510 | 516,380 |
Efficiency (%) | 47.26 | 50.86 | 50.51 | 42.96 | 60.17 | 51.72 | 54.93 | 52.32 | 50.95 | 52.57 | 51.11 | 60.01 |
Factors | Regression Coefficients of Head | p-Values of Head | Regression Coefficients of Shaft Power | p-Values of Shaft Power | Regression Coefficients of Efficiency | p-Values of Efficiency |
---|---|---|---|---|---|---|
D2m | 12.35 | 0.0012 | 34,735.58 | 0.0075 | −0.9342 | 0.1406 |
b2 | 8.15 | 0.0055 | 49,617.58 | 0.0020 | −2.63 | 0.0067 |
δ2 | −1.49 | 0.3746 | −13,282.75 | 0.1282 | 0.5808 | 0.3179 |
β2 | 8.40 | 0.0050 | 52,130.25 | 0.0017 | −2.76 | 0.0056 |
b3 | −2.32 | 0.1954 | 9415.08 | 0.2465 | −0.8992 | 0.1523 |
δ3 | 0.0758 | 0.9620 | −1012.08 | 0.8911 | 0.0258 | 0.9620 |
α3 | −2.08 | 0.2374 | 15,309.92 | 0.0921 | −1.79 | 0.0245 |
Design Variables | Range of Value | Original Value |
---|---|---|
Average outlet diameter of the impeller D2m | [395 mm, 425 mm] | 410 mm |
Impeller outlet width b2 | [60 mm, 75 mm] | 60 mm |
Outlet blade angle of the impeller β2 | [20°, 40°] | 32.5° |
Inlet blade angle of the diffuser α3 | [8°, 20°] | 12° |
Neural Network | MRE of Head | R2 of Head | MRE of Shaft Power | R2 of Shaft Power | MRE of Efficiency | R2 of Efficiency |
---|---|---|---|---|---|---|
BP | 0.75% | 0.9465 | 1.15% | 0.9661 | 0.66% | 0.9514 |
GABP | 0.43% | 0.9827 | 0.65% | 0.9881 | 0.29% | 0.9863 |
Neural Network | MRE of Head | MRE of Shaft Power | MRE of Efficiency |
---|---|---|---|
BP | 1.44% | 2.41% | 1.29% |
GABP | 0.31% | 0.73% | 0.34% |
Parameter | Value |
---|---|
Number of reference points | 200 |
Number of generations | 1000 |
Population size | 200 |
Crossover probability | 0.09 |
Mutation probability | 0.05 |
Design Variables | The Original Pump | The Final Optimized Pump |
---|---|---|
Average outlet diameter of the impeller D2m | 410 mm | 408.73 mm |
Impeller outlet width b2 | 60 mm | 61.47 mm |
Outlet blade angle of the impeller β2 | 32.5° | 20.00° |
Inlet blade angle of the diffuser α3 | 12° | 13.68° |
Head of GABP | Shaft Power of GABP | Efficiency of GABP | Head of CFD | Shaft Power of CFD | Efficiency of CFD | |
---|---|---|---|---|---|---|
The original pump | - | - | - | 297.85 m | 686,866 W | 49.54% |
The final optimized pump | 283.68 m | 576,750 W | 55.69% | 285.23 m | 586,259 W | 55.58% |
Head (m) | Shaft Power (W) | Efficiency (%) | |
---|---|---|---|
The original pump | 290.97 | 727,158 | 47.80 |
The final optimized pump | 276.27 | 613,428 | 53.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Zhai, X.; Li, Z. Multi-Objective Optimization of Deep-Sea Mining Pump Based on CFD, GABP Neural Network and NSGA-III Algorithm. J. Mar. Sci. Eng. 2022, 10, 1063. https://doi.org/10.3390/jmse10081063
Hu Q, Zhai X, Li Z. Multi-Objective Optimization of Deep-Sea Mining Pump Based on CFD, GABP Neural Network and NSGA-III Algorithm. Journal of Marine Science and Engineering. 2022; 10(8):1063. https://doi.org/10.3390/jmse10081063
Chicago/Turabian StyleHu, Qiong, Xiaoyu Zhai, and Zhenfu Li. 2022. "Multi-Objective Optimization of Deep-Sea Mining Pump Based on CFD, GABP Neural Network and NSGA-III Algorithm" Journal of Marine Science and Engineering 10, no. 8: 1063. https://doi.org/10.3390/jmse10081063
APA StyleHu, Q., Zhai, X., & Li, Z. (2022). Multi-Objective Optimization of Deep-Sea Mining Pump Based on CFD, GABP Neural Network and NSGA-III Algorithm. Journal of Marine Science and Engineering, 10(8), 1063. https://doi.org/10.3390/jmse10081063