Assessment of the Centrality of the Cruise Ship Navigation Networks in Southern Europe through the Application of Social Network Analysis
Abstract
:1. Introduction
COVID-19 Risk to Cruise
2. Aim and Structure of This Work
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Social Network Analysis Applied to Shipping Industry
3.2.2. Centrality Degree Metric
3.2.3. Betweenness Centrality Metric
3.2.4. Hub and Authority Centrality
4. Results
4.1. Network Level Metrics
4.2. Node Level Metrics
4.2.1. Outgoing and Incoming Centrality Degree
4.2.2. Incoming and Out-Coming Degree
4.2.3. Betweenness Centrality
4.2.4. Hub Index
5. Discussion
6. Conclusions
- The contemporary cruise port network in Southern Europe is dynamic; during the period 2015–2019, it increased the number of nodes and connections. Therefore, the network has become more complex.
- The system of itineraries of the cruise shipping makes all ports of the network register outgoing and incoming centrality degree.
- The cruise traffic generated in a port has an impact on several ports. According to this research, two effects are identified, (1) the number of different ports to(from) which each port generates(receives) traffic, and (2) the intensity of the connections between pairs of ports.
- The port of Barcelona is a key performer in contemporary cruise shipping in the Western Mediterranean (the highest values of incoming and out-coming degree and authority centrality), but it also receives and generates cruise traffic from and to other cruise regions (the highest betweenness centrality), especially to the Atlantic Ocean.
- Depending on the port, betweenness centrality results are associated only with traffic from one cruise region, or it means the role of the port as a transit port to another cruise region in which the vessel will operate in regular itineraries.
- At least four ports in Southern Europe can be classified as hub ports, i.e., Palma de Mallorca, Barcelona, Valencia, and Marseille.
- The port of Palma de Mallorca stands out as a hub port, with a remarkable character of service to high-impact ports.
- The ports of the Atlantic Ocean close to the Mediterranean Sea show high values of incoming and out-coming degrees but low intensity in the connections. This region acts as an intermediate call associated with repositioning sailings to and from the Mediterranean Sea, which explains the result obtained.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigue, J.P.; Notteboom, T. The geography of cruises: Itineraries, not destinations. Appl. Geogr. 2013, 38, 29–32. [Google Scholar] [CrossRef]
- Cruise Market Watch. Growth of the Ocean Cruise Line Industry. 2021. Available online: https://cruisemarketwatch.com/growth/ (accessed on 30 November 2021).
- Radic, A. Towards an understanding of a child’s cruise experience. Curr. Issues Tour. 2019, 22, 237–252. [Google Scholar] [CrossRef]
- MedCruise. Cruise Activities in MedCruise Ports: Statistics Report 2019; MedCruise: Santa Cruz de Tenerife, Spain, 2020. [Google Scholar]
- Cruise Lines International Association (CLIA). 2019 Cruise Trends & Industry Outlook; CLIA: Washington, DC, USA, 2019.
- McCarthy, J. The Cruise Industry and Port City Regeneration: The Case of Valletta. Eur. Plan. Stud. 2003, 11, 241–350. [Google Scholar] [CrossRef]
- Cruise Lines International Association (CLIA). The Economic Contribution of the International Cruise Industry Globally in 2019; CLIA: Washington, DC, USA, 2020.
- Chase, G.; Alon, I. Evaluating the economic impact of cruise tourism: A case study of Barbados. Anatolia 2002, 13, 5–18. [Google Scholar] [CrossRef]
- Lohmann, G.; Albers, S.; Koch, B.; Pavlovich, K. From hub to tourist destination—An explorative study of Singapore and Dubai’s aviation-based transformation. J. Air Transp. Manag. 2009, 15, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Esteve-Perez, J.; Garcia-Sanchez, A.; Muñoz-Paupie, A. Cruise traffic seasonality patterns in the Western Mediterranean and the Adriatic Sea: A Challenge to Port Operators. Coast. Manag. 2019, 47, 362–386. [Google Scholar] [CrossRef]
- European Commission. Tourist Facilities in Ports: Growth Opportunities for the European Maritime Economy: Economic and Environmentally Sustainable Development of Tourist Facilities in Ports; Office for Official Publications of the European Communities: Luxembourg, 2009. [Google Scholar] [CrossRef]
- Business Research and Economic Advisors (BREA). The Contribution of the North American Cruise Industry to the U.S. Economy in 2004; BREA: Phillipsburg, NJ, USA, 2005. [Google Scholar]
- Vina, L.; Ford, J. Economic impact of proposed cruise ship business. Ann. Tour. Res. 1998, 25, 205–221. [Google Scholar]
- Peisley, T. Cruising: A global view of the challenge and the opportunity. In Proceedings of the International Association Cities and Ports Days, Le Port, France, 19–22 November 2003. [Google Scholar]
- Brida, J.; Zapata, S. Cruise tourism: Economic, socio-cultural and environmental impacts. Int. J. Leis. Tour. Mark. 2009, 1, 205–226. [Google Scholar] [CrossRef]
- Soriani, S.; Bertazzon, S.; Cesare, F.D.; Rech, G. Cruising in the Mediterranean: Structural aspects and evolutionary trends. Marit. Policy Manag. 2009, 36, 235–251. [Google Scholar] [CrossRef]
- Asero, V.; Skonieczny, S. Cruise tourism and sustainability in the Mediterranean: Destination Venice. In Mobilites, Tourism and Travel Behaviour—Contexts and Boundaries; Butowski, L., Ed.; IntechOpen Limited: London, UK, 2017; pp. 93–106. [Google Scholar]
- Toneatti, L.; Deluca, C.; Fraleoni Morgera, A.; Piller, M.; Pozzetto, D. Waste to Energy Onboard Cruise Ships: A New Paradigm for Sustainable Cruising. J. Mar. Sci. Eng. 2022, 10, 480. [Google Scholar] [CrossRef]
- Ruban, D.A.; Yashalova, N.N. Corporate Pro-Environmental Behavior on the Seas: Eco-Ethical Prescriptions of the Largest Cruise Companies. J. Mar. Sci. Eng. 2022, 10, 380. [Google Scholar] [CrossRef]
- González, A. Venice: The problem of overtourism and the impact of cruises. J. Reg. Res. 2018, 42, 35–51. [Google Scholar]
- Butt, N. The impact of cruise ship generated waste on homeports and port of call: A study of Southampton. Mar. Policy 2007, 31, 591–598. [Google Scholar] [CrossRef]
- Tzannatos, E. Ship emissions and their externalities for the port of Piraeus—Greece. Atmos. Environ. 2010, 44, 400–407. [Google Scholar] [CrossRef]
- Santos, T.A.; Martins, P.; Guedes Soares, C. Characterization of the cruise ship fleet calling in the port of Lisbon. In Developments in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor and Francis: London, UK, 2021; Volume 1, pp. 91–100. [Google Scholar]
- Lau, Y.-Y.; Sun, X.; Yang, W.; Kanrak, M. Chinese Cruisers’ Preference, Travel Constraints, and Behavioural Intention: Experience from the Arctic Cruise Market. J. Mar. Sci. Eng. 2022, 10, 156. [Google Scholar] [CrossRef]
- Cao, M.; Liu, Y.; Gai, T.; Zhou, M.; Fujita, H.; Wu, J. A Comprehensive Star Rating Approach for Cruise Ships Based on Interactive Group Decision Making with Personalized Individual Semantics. J. Mar. Sci. Eng. 2022, 10, 638. [Google Scholar] [CrossRef]
- Zhang, N.; Miao, R.; Huang, H.; Chan, E.Y. Contact infection of infectious disease on board a cruise ship. Sci. Rep. 2016, 6, 38790. [Google Scholar] [CrossRef]
- Esteve-Perez, J.; Garcia-Sanchez, A. Dynamism patterns of Western Mediterranean cruise ports and the coopetition relationships between major cruise ports. Pol. Marit. Res. 2018, 25, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Lorenčič, V.; Twrdy, E.; Batista, M. Development of Competitive–Cooperative Relationships among Mediterranean Cruise Ports since 2000. J. Mar. Sci. Eng. 2020, 8, 374. [Google Scholar] [CrossRef]
- Jeon, J.W.; Duru, O.; Yeo, G.T. Cruise port centrality and spatial patterns of cruise shipping in the Asian market. Marit. Policy Manag. 2019, 46, 257–304. [Google Scholar] [CrossRef]
- Esteve-Perez, J.; Garcia-Sanchez, A. Determination of seasonality patterns in the transport of cruise travelers through clustering techniques. J. Navig. 2019, 72, 1417–1434. [Google Scholar] [CrossRef]
- Lee, S.; Ramdeen, C. Cruise ship itineraries and occupancy rates. Tour. Manag. 2013, 34, 236–237. [Google Scholar] [CrossRef]
- Sigala, M. Cruise itinerary planning. In Cruise Ship Tourism, 2nd ed.; Dowling, R., Weeden, C., Eds.; CABI: Egham, UK, 2017; pp. 524–545. [Google Scholar] [CrossRef]
- Liu, B.; Pennington, G.L.; Klemmer, L. Using social media in hotel crisis management: The case of bed bugs. J. Hosp. Tour. Technol. 2015, 6, 102–112. [Google Scholar] [CrossRef]
- World Tourism Organization (WTO). Cruise Tourism: Current Situation and Trends. Available online: https://www.e-unwto.org/doi/book/10.18111/9789284413645 (accessed on 30 April 2021).
- Rodrigues da Silva, A.L. An overview of the impact of COVID-19 on the cruise industry with considerations for Florida. Transp. Res. Interdiscip. Perspect. 2021, 10, 100391. [Google Scholar] [CrossRef]
- Mallapaty, S. What the cruise-ship outbreaks reveal about COVID-19. Nature 2020, 580, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tidbury, H.; Taylor, N.; van der Molen, J.; Garcia, L.; Posen, P.; Gill, A.; Lincoln, S.; Judd, A.; Hyder, K. Social network analysis as a tool for marine spatial planning: Impacts of decommissioning on connectivity in the North Sea. J. Appl. Ecol. 2020, 57, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Las Palmas Port Authority. Cruise Ship Statistics. 2020. Available online: http://www.palmasport.es/es/datos-estadisticos-buques/ (accessed on 6 May 2020).
- Barcelona Port Authority. Cruise Ship Statistics. 2020. Available online: http://www.portdebarcelona.cat/es/web/port-dels-negocis/cruceros1 (accessed on 5 April 2020).
- Port of Bari. Cruise Calendar. 2020. Available online: https://www.adspmam.it/category/crociere/ (accessed on 18 April 2020).
- Cádiz Port Authority. Cruise Ship Statistics. 2020. Available online: https://www.puertocadiz.com/el-puerto/instalaciones-para-traficos-especificos/cruceros-y-trafico-de-pasajeros/#opc01 (accessed on 3 May 2020).
- Greek Cruise Ports Cluster. Cruise Ship Statistics. 2020. Available online: http://www.greekcruise.gr (accessed on 10 April 2020).
- Dubrovnik Port Authority. Cruise Ship Statistics. 2020. Available online: http://195.29.106.30/ (accessed on 28 March 2020).
- Portos da Madeira. Cruise Ship Movements in Funchal Port. 2020. Available online: http://www.apram.pt/site/index.php/en/ports/wharf-reservations (accessed on 28 March 2020).
- Port of Gibraltar. Cruise Calendar. 2020. Available online: https://www.gibraltarport.com/cruise/schedules (accessed on 29 April 2020).
- Balearic Islands Port Authority. Cruise Ship Statistics. 2020. Available online: http://www.portsdebalears.com/es/buques-en-puerto (accessed on 10 April 2020).
- Lisbon Port Authority. Cruise Ship Statistics. 2020. Available online: https://www.portodelisboa.pt/planeamento-de-cruzeiros1 (accessed on 25 March 2020).
- Livorno Port Authority. Cruise Ship Statistics. 2020. Available online: http://www.portolivorno2000.it/en (accessed on 26 April 2020).
- Malaga Port Authority. Cruise Ship Statistics. 2020. Available online: https://www.puertomalaga.com/es/prevision-cruceros/ (accessed on 25 March 2020).
- Valencia Port Authority. Cruise Ship Statistics. 2020. Available online: https://www.valenciaportpcs.net/portcalls/search/historic (accessed on 22 March 2020).
- Santos, T.A.; Martins, P.; Guedes Soares, C. Cruise shipping in the Atlantic coast of the Iberian Peninsula. Marit. Policy Manag. 2021, 48, 129–145. [Google Scholar] [CrossRef]
- Zhang, J.; Zhai, S.; Liu, H.; Stevenson, J.A. Social network analysis on a topic-based navigation guidance system in a public health portal. J. Assn. Inf. Sci. Tec. 2016, 67, 1068–1088. [Google Scholar] [CrossRef]
- Lovric, M.; Da Re, R.; Vidale, E.; Pettenella, D.; Mavsar, R. Social network analysis as a tool for the analysis of international trade of wood and non-wood forest products. For. Policy Econ. 2018, 86, 45–66. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, H.S.; Im, N.G. Keyword network analysis for technology forecasting. J. Intell. Inf. Syst. 2011, 17, 227–240. [Google Scholar] [CrossRef]
- Martini, U.; Buffa, F. Local networks, stakeholder dynamics and sustainability in tourism. Opportunities and limits in the light of stakeholder theory and SNA. Sinergie Ital. J. Manag. 2015, 33, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Chai, C.-L.; Liu, X.; Zhang, W.J.; Baber, Z. Application of social network theory to prioritizing Oil & Gas industries protection in a networked critical infrastructure system. J. Loss Prev. Process Ind. 2011, 24, 688–694. [Google Scholar] [CrossRef]
- Noble, M.; Harasti, D.; Pittock, J.; Doran, B. Understanding the spatial diversity of social uses, dynamics, and conflicts in marine spatial planning. J. Environ. Manag. 2019, 246, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Mou, N.; Wang, C.; Yang, T.; Ren, H.; Zhang, L.; Xu, H.; Liu, W. Spatiotemporal patterns of maritime trade between China and Maritime Silk Road: Evidence from a quantitative study using social network analysis. J. Transp. Geogr. 2022, 102, 103387. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, T.Y.; Yan, T.; Dooley, K. Structural investigation of supply networks: A social network analysis approach. J. Oper. Manag. 2011, 29, 194–211. [Google Scholar] [CrossRef]
- Ducruet, C. Network diversity and maritime flows. J. Transp. Geogr. 2013, 30, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.; Wang, Y.; Yeo, G.T. SNA approach for analysing the research trend of international port competition. Asian J. Shipp. Logist. 2016, 32, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cullinane, K. Determinants of port centrality in maritime container transportation. Transp. Res. E Logist. Transp. Rev. 2016, 95, 236–340. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Scott, J. Social Network Analysis: A Handbook, 2nd ed.; SAGE Publications Ltd.: London, UK, 2000. [Google Scholar]
- Provan, K.G.; Milward, H.B. A preliminary theory of interorganizational network effectiveness: A comparative study of four community mental health systems. Adm. Sci. Q. 1995, 40, 1–33. [Google Scholar] [CrossRef]
- Frenken, K. A complexity approach to innovation networks. The case of the aircraft industry (1999–1997). Res. Policy 2000, 29, 257–272. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002. [Google Scholar]
- GNU Octave. Available online: https://octave.org/ (accessed on 15 May 2020).
- Kleinberg, J.M. Authoritative sources in a hyperlinked environment. J. ACM 1999, 46, 604–632. [Google Scholar] [CrossRef]
- Hörlesberger, M.; Schiebel, E. Web networks of the science system: Weighted hubs and authorities. Scientometrics 2006, 66, 263–278. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Tsai, C.-C.; Lee, J.-Y. A Study on the Trends of the Global Cruise Tourism Industry, Sustainable Development, and the Impacts of the COVID-19 Pandemic. Sustainability 2022, 14, 6890. [Google Scholar] [CrossRef]
Port | Region | Annual Average Cruise Calls 2015–2019 | Annual Average Cruise Passengers 2015–2019 |
---|---|---|---|
Barcelona | Western Mediterranean | 783 | 2,826,548 |
Palma de Mallorca | Western Mediterranean | 561 | 1,859,482 |
Mykonos | Eastern Mediterranean | 546 | 712,296 |
Dubrovnik | Adriatic Sea | 543 | 789,729 |
Thira-Santorini | Eastern Mediterranean | 536 | 785,289 |
Livorno | Western Mediterranean | 478 | 752,945 |
Corfu | Eastern Mediterranean | 426 | 723,794 |
Lisbon | Atlantic Ocean | 319 | 540,906 |
Cádiz | Atlantic Ocean | 304 | 464,804 |
Funchal | Atlantic Ocean (Madeira) | 293 | 553,505 |
Málaga | Western Mediterranean | 274 | 471,343 |
Las Palmas de Gran Canaria | Atlantic Ocean (Canary Islands) | 245 | 667,108 |
Katakolo | Eastern Mediterranean | 241 | 482,760 |
Bari | Adriatic Sea | 229 | 574,935 |
Arrecife | Atlantic Ocean (Canary Islands) | 223 | 436,846 |
Gibraltar | Western Mediterranean | 221 | 377,639 |
Valencia | Western Mediterranean | 191 | 408,820 |
Ibiza | Western Mediterranean | 153 | 290,334 |
Puerto del Rosario | Atlantic Ocean (Canary Islands) | 88 | 177,420 |
Mahón | Western Mediterranean | 85 | 78,292 |
Segment of Service | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
Contemporary | 3926 | 4050 | 3966 | 4042 | 4327 |
Premium | 2532 | 2525 | 2389 | 2214 | 2101 |
Luxury | 1192 | 1479 | 1344 | 1575 | 1578 |
Budget | 883 | 894 | 865 | 960 | 908 |
Expedition | 521 | 736 | 608 | 503 | 436 |
Upper premium | 136 | 241 | 217 | 186 | 233 |
Year | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
Number of nodes | 120 | 125 | 126 | 149 | 143 |
Number of connections | 386 | 418 | 416 | 460 | 489 |
Density | 0.027 | 0.027 | 0.026 | 0.021 | 0.024 |
Centrality degree | 0.260 | 0.224 | 0.222 | 0.230 | 0.245 |
Out-Centralization | 0.227 | 0.176 | 0.183 | 0.169 | 0.196 |
In-Centralization | 0.168 | 0.192 | 0.151 | 0.149 | 0.181 |
Port | 2015 | 2016 | 2017 | 2018 | 2019 | Annual Average 2015–2019 |
---|---|---|---|---|---|---|
Palma de Mallorca | 360 | 332 | 301 | 330 | 331 | 331 |
Barcelona | 324 | 313 | 311 | 330 | 312 | 318 |
Dubrovnik | 203 | 220 | 213 | 201 | 192 | 206 |
Mykonos | 122 | 198 | 182 | 215 | 242 | 192 |
Corfu | 142 | 192 | 189 | 217 | 189 | 186 |
Thira-Santorini | 171 | 67 | 54 | 264 | 342 | 180 |
Marseille | 205 | 179 | 165 | 110 | 112 | 154 |
Bari | 128 | 129 | 119 | 178 | 210 | 153 |
Venice | 157 | 154 | 136 | 141 | 158 | 149 |
Livorno | 135 | 93 | 158 | 152 | 181 | 144 |
Katakolo | 135 | 158 | 148 | 145 | 128 | 143 |
Valencia | 183 | 194 | 173 | 63 | 82 | 139 |
Civitavecchia | 92 | 124 | 164 | 126 | 174 | 136 |
Piraeus | 106 | 84 | 104 | 159 | 187 | 128 |
Málaga | 113 | 96 | 99 | 93 | 105 | 101 |
Port | 2015 | 2016 | 2017 | 2018 | 2019 | Annual Average 2015–2019 |
---|---|---|---|---|---|---|
Palma de Mallorca | 384 | 316 | 330 | 307 | 330 | 334 |
Barcelona | 338 | 348 | 345 | 314 | 319 | 333 |
Dubrovnik | 206 | 222 | 208 | 200 | 197 | 207 |
Mykonos | 118 | 182 | 203 | 200 | 242 | 189 |
Corfu | 149 | 161 | 160 | 214 | 194 | 176 |
Thira-Santorini | 174 | 44 | 35 | 247 | 320 | 164 |
Venice | 141 | 184 | 138 | 188 | 153 | 161 |
Valencia | 234 | 198 | 205 | 75 | 80 | 158 |
Livorno | 135 | 96 | 168 | 166 | 187 | 150 |
Bari | 110 | 128 | 127 | 181 | 198 | 149 |
Katakolo | 118 | 145 | 139 | 137 | 125 | 133 |
Piraeus | 65 | 118 | 145 | 143 | 122 | 119 |
Marseille | 99 | 115 | 119 | 115 | 142 | 118 |
Málaga | 121 | 94 | 100 | 95 | 103 | 103 |
Cannes | 93 | 63 | 92 | 77 | 87 | 82 |
Port | 2015 | 2016 | 2017 | 2018 | 2019 | Annual Average 2015–2019 |
---|---|---|---|---|---|---|
Barcelona | 23 | 27 | 22 | 22 | 23 | 23 |
Palma de Mallorca | 19 | 22 | 22 | 19 | 20 | 20 |
Málaga | 19 | 19 | 19 | 25 | 18 | 20 |
Lisbon | 17 | 17 | 16 | 17 | 27 | 19 |
Thira-Santorini | 14 | 5 | 3 | 24 | 29 | 15 |
Funchal | 21 | 10 | 12 | 14 | 15 | 14 |
Mykonos | 11 | 16 | 17 | 9 | 17 | 14 |
Corfu | 12 | 11 | 10 | 17 | 14 | 13 |
Katakolo | 9 | 12 | 14 | 16 | 13 | 13 |
Dubrovnik | 13 | 14 | 12 | 9 | 15 | 13 |
Cádiz | 7 | 12 | 13 | 13 | 16 | 12 |
Amsterdam | 9 | 10 | 13 | 15 | 11 | 12 |
Gibraltar | 4 | 19 | 12 | 11 | 12 | 12 |
Valencia | 9 | 8 | 13 | 12 | 11 | 11 |
Livorno | 11 | 8 | 8 | 10 | 13 | 10 |
Port | 2015 | 2016 | 2017 | 2018 | 2019 | Annual Average 2015–2019 |
---|---|---|---|---|---|---|
Barcelona | 30 | 25 | 26 | 28 | 24 | 27 |
Málaga | 16 | 17 | 23 | 28 | 19 | 21 |
Palma de Mallorca | 21 | 20 | 19 | 18 | 20 | 20 |
Lisbon | 15 | 20 | 16 | 15 | 30 | 19 |
Dubrovnik | 16 | 18 | 17 | 15 | 16 | 16 |
Thira-Santorini | 17 | 4 | 3 | 27 | 31 | 16 |
Funchal | 15 | 11 | 14 | 16 | 16 | 14 |
Katakolo | 11 | 15 | 14 | 15 | 15 | 14 |
Mykonos | 10 | 17 | 12 | 14 | 17 | 14 |
Cádiz | 11 | 9 | 15 | 11 | 18 | 13 |
Corfu | 10 | 12 | 11 | 15 | 14 | 12 |
Livorno | 10 | 11 | 14 | 13 | 12 | 12 |
Valencia | 9 | 12 | 10 | 11 | 12 | 11 |
Amsterdam | 11 | 10 | 10 | 15 | 7 | 11 |
Gibraltar | 5 | 17 | 10 | 9 | 9 | 10 |
Port | 2015 | 2016 | 2017 | 2018 | 2019 | Annual Average 2015–2019 |
---|---|---|---|---|---|---|
Barcelona | 0.253 | 0.124 | 0.107 | 0.100 | 0.131 | 0.143 |
Lisbon | 0.114 | 0.115 | 0.102 | 0.090 | 0.209 | 0.126 |
Amsterdam | 0.096 | 0.093 | 0.085 | 0.131 | 0.123 | 0.106 |
Málaga | 0.075 | 0.077 | 0.099 | 0.216 | 0.056 | 0.105 |
Thira-Santorini | 0.091 | 0.002 | 0.001 | 0.156 | 0.178 | 0.086 |
Funchal | 0.117 | 0.032 | 0.052 | 0.082 | 0.119 | 0.080 |
Mykonos | 0.045 | 0.112 | 0.127 | 0.038 | 0.057 | 0.076 |
Dubrovnik | 0.108 | 0.091 | 0.075 | 0.037 | 0.046 | 0.071 |
Palma de Mallorca | 0.079 | 0.059 | 0.095 | 0.044 | 0.066 | 0.069 |
Gothenburg | 0.040 | 0.129 | 0.082 | 0.030 | 0.039 | 0.064 |
Katakolo | 0.033 | 0.08 | 0.068 | 0.059 | 0.039 | 0.056 |
Civitavecchia | 0.055 | 0.028 | 0.05 | 0.043 | 0.101 | 0.055 |
Southampton | 0.091 | 0.002 | 0.03 | 0.128 | 0.000 | 0.050 |
Cádiz | 0.058 | 0.022 | 0.054 | 0.043 | 0.056 | 0.047 |
Valletta | 0.025 | 0.015 | 0.054 | 0.071 | 0.022 | 0.037 |
Port | 2015 | 2016 | 2017 | 2018 | 2019 | |||||
---|---|---|---|---|---|---|---|---|---|---|
xk | yk | xk | yk | xk | yk | xk | yk | xk | yk | |
Palma de Mallorca | 0.5942 | 0.5602 | 0.4285 | 0.6307 | 0.4868 | 0.5524 | 0.5850 | 0.6567 | 0.1518 | 0.1921 |
Barcelona | 0.5394 | 0.4688 | 0.5731 | 0.4026 | 0.5980 | 0.4376 | 0.5941 | 0.5607 | 0.1753 | 0.1705 |
Valencia | 0.3431 | 0.3525 | 0.4159 | 0.3801 | 0.3607 | 0.3878 | 0.1631 | 0.1305 | 0.0562 | 0.0508 |
Marseille | 0.2793 | 0.4422 | 0.2965 | 0.4410 | 0.3185 | 0.4369 | 0.3253 | 0.2775 | 0.1252 | 0.0836 |
Thira-Santorini | 0.0053 | 0.0050 | 0.0081 | 0.0102 | 0.0032 | 0.0050 | 0.0356 | 0.0367 | 0.4171 | 0.3782 |
Mykonos | 0.0060 | 0.0055 | 0.0236 | 0.0184 | 0.0129 | 0.0131 | 0.0307 | 0.0419 | 0.3293 | 0.3582 |
Bari | 0.0069 | 0.0047 | 0.0320 | 0.0274 | 0.0155 | 0.0101 | 0.0366 | 0.0453 | 0.3628 | 0.3993 |
Corfu | 0.0088 | 0.0071 | 0.0324 | 0.0374 | 0.0155 | 0.0216 | 0.0430 | 0.0390 | 0.3697 | 0.3127 |
Dubrovnik | 0.0118 | 0.0062 | 0.0460 | 0.0354 | 0.0183 | 0.0183 | 0.0340 | 0.0405 | 0.2300 | 0.2440 |
Venice | 0.0063 | 0.0091 | 0.0411 | 0.0371 | 0.0142 | 0.0146 | 0.0431 | 0.0293 | 0.3255 | 0.2586 |
Livorno | 0.0352 | 0.0560 | 0.0392 | 0.0504 | 0.0558 | 0.0944 | 0.0960 | 0.1110 | 0.0645 | 0.0561 |
Piraeus | 0.0029 | 0.0038 | 0.0263 | 0.0137 | 0.0144 | 0.0093 | 0.0316 | 0.0344 | 0.2593 | 0.4082 |
Cannes | 0.2244 | 0.0462 | 0.1536 | 0.0362 | 0.2121 | 0.0185 | 0.2200 | 0.2149 | 0.0656 | 0.0111 |
Ibiza | 0.0930 | 0.0931 | 0.1462 | 0.1380 | 0.2207 | 0.1395 | 0.1843 | 0.1378 | 0.0485 | 0.0530 |
Valletta | 0.1827 | 0.0722 | 0.3423 | 0.0110 | 0.1631 | 0.0292 | 0.1305 | 0.0357 | 0.0802 | 0.0203 |
Port | 2015 | 2016 | 2017 | 2018 | 2019 | Annual Average Hub Index 2015–2019 | Annual Average Cruise Calls 2015–2019 |
---|---|---|---|---|---|---|---|
Palma de Mallorca | 0.5958 | 0.4922 | 0.5228 | 0.5919 | 0.1689 | 0.4743 | 561 |
Barcelona | 0.4581 | 0.4993 | 0.5446 | 0.5631 | 0.1641 | 0.4458 | 783 |
Valencia | 0.2188 | 0.2318 | 0.2339 | 0.0342 | 0.0127 | 0.1463 | 191 |
Marseille | 0.0960 | 0.1247 | 0.1370 | 0.1076 | 0.0441 | 0.1019 | 476 |
Thira-Santorini | 0.0024 | 0.0012 | 0.0004 | 0.0277 | 0.3787 | 0.0821 | 536 |
Mykonos | 0.0018 | 0.0112 | 0.0080 | 0.0225 | 0.2476 | 0.0582 | 546 |
Bari | 0.0017 | 0.0112 | 0.0050 | 0.0230 | 0.2245 | 0.0531 | 229 |
Corfu | 0.0032 | 0.0165 | 0.0091 | 0.0273 | 0.1970 | 0.0506 | 426 |
Dubrovnik | 0.0050 | 0.0266 | 0.0116 | 0.0231 | 0.1390 | 0.0411 | 543 |
Venice | 0.0029 | 0.0212 | 0.0061 | 0.0211 | 0.1330 | 0.0369 | 504 |
Livorno | 0.0166 | 0.0127 | 0.0385 | 0.0534 | 0.0336 | 0.0309 | 478 |
Piraeus | 0.0006 | 0.0069 | 0.0052 | 0.0147 | 0.1212 | 0.0297 | 594 |
Cannes | 0.0338 | 0.0176 | 0.0324 | 0.0520 | 0.0099 | 0.0291 | 347 |
Ibiza | 0.0133 | 0.0268 | 0.0494 | 0.0330 | 0.0142 | 0.0273 | 153 |
Valletta | 0.0192 | 0.0691 | 0.0170 | 0.0127 | 0.0090 | 0.0254 | 332 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteve-Pérez, J.; del Río-González, M. Assessment of the Centrality of the Cruise Ship Navigation Networks in Southern Europe through the Application of Social Network Analysis. J. Mar. Sci. Eng. 2022, 10, 1072. https://doi.org/10.3390/jmse10081072
Esteve-Pérez J, del Río-González M. Assessment of the Centrality of the Cruise Ship Navigation Networks in Southern Europe through the Application of Social Network Analysis. Journal of Marine Science and Engineering. 2022; 10(8):1072. https://doi.org/10.3390/jmse10081072
Chicago/Turabian StyleEsteve-Pérez, Jerónimo, and Manuel del Río-González. 2022. "Assessment of the Centrality of the Cruise Ship Navigation Networks in Southern Europe through the Application of Social Network Analysis" Journal of Marine Science and Engineering 10, no. 8: 1072. https://doi.org/10.3390/jmse10081072
APA StyleEsteve-Pérez, J., & del Río-González, M. (2022). Assessment of the Centrality of the Cruise Ship Navigation Networks in Southern Europe through the Application of Social Network Analysis. Journal of Marine Science and Engineering, 10(8), 1072. https://doi.org/10.3390/jmse10081072