Isolation and Identification of Luminescent Bacteria in Deep Sea Marine Organisms from Sicilian Waters (Mediterranean Sea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preliminary Treatment of Samples
- N. caroli: small portions of the siphon, ventral mantle, eye, and the mantle invagination
- C. agassizi: the ventral perirectal light organ located in the abdomen just before the anal opening
2.3. Isolation of Luminous Bacteria
2.4. Physiological Tests
2.5. PCR Amplification of 16S rDNA for Bacterial Isolates
2.6. Sequencing and Analysis of 16S rRNA Gene
2.7. LuxAB Gene Amplification
3. Results
3.1. Isolation of Luminous Bacteria
3.2. Physiological Tests
3.3. Phylogenetic Identification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nealson, K.H.; Hastings, J.W. The Luminous Bacteria. In The Prokaryotes, 2nd ed.; Balows, A., Tru, H., Eds.; Springer: New York, NY, USA, 1992; pp. 625–639. [Google Scholar]
- Dunlap, P.V.; Kita-Tsukamoto, K. Luminous Bacteria. In The Prokaryotes; Dworkin, M., Falkow, S., Eds.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Ramesh, A.B.; Loganathan, G. Ecological dynamics of marine luminous bacteria. J. Basic Microbiol. 1990, 30, 686–703. [Google Scholar] [CrossRef]
- Ruby, E.G.; Urbanowski, M. Genome sequence of Vibrio fischeri: A symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 2005, 102, 3004–3009. [Google Scholar] [CrossRef]
- Hastings, J.W. Chemistries and colours of bioluminescent reactions: A review. Gene 1996, 173, 5–11. [Google Scholar] [CrossRef]
- Sukovataya, I.E.; Tyulkova, N.A. Kinetic analysis of bacterial bioluminescence in water organic media. Luminescence 2001, 16, 271–273. [Google Scholar] [CrossRef]
- Ast, J.C.; Dunlap, P.V. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ. Microbiol. 2005, 7, 1641–1654. [Google Scholar] [CrossRef]
- Ast, J.C.; Cleenwerck, I. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. Int. J. Syst. Evol. Microbiol. 2007, 57, 2073–2078. [Google Scholar] [CrossRef]
- Martini, S.; Haddock, S.H. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci. Rep. 2017, 7, 45750. [Google Scholar] [CrossRef]
- Widder, E.A. Bioluminescence in the ocean: Origins of biological, chemical, and ecological diversity. Science 2010, 328, 704–708. [Google Scholar] [CrossRef]
- Hastings, J.W.; Mitchell, G. Endo-symbiotic bioluminescent bacteria from the light organ of pony fish. Biol. Bull. 1971, 141, 261–268. [Google Scholar] [CrossRef]
- Haddock, S.H.; Moline, M.A. Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2010, 2, 443–493. [Google Scholar] [CrossRef]
- Catul, V.; Gauns, M. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 2011, 21, 339–354. [Google Scholar] [CrossRef]
- Chakrabarty, P.; Davis, M.P. Is sexual selection driving diversification of the bioluminescent ponyfishes (Teleostei: Leiognathidae)? Mol. Ecol. 2011, 20, 2818–2834. [Google Scholar] [CrossRef]
- Davis, M.P.; Holcroft, N.I. Species-specific bioluminescence facilitates speciation in the deep sea. Mar. Biol. 2014, 161, 1139–1148. [Google Scholar] [CrossRef]
- Hoving, H.J.; Jose Angel, A. The study of Deep-Sea Cephalopods. In Advances in Marine Biology; Erica, A., Vidal, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 67, pp. 235–359. [Google Scholar]
- Davis, M.P.; Sparks, J.S. Repeated and widespread evolution of bioluminescence in marine fishes. PLoS ONE 2016, 11, e0155154. [Google Scholar] [CrossRef]
- Lau, E.S.; Oakley, T.H. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol. Rev. 2020, 96, 673–691. [Google Scholar] [CrossRef]
- Haygood, M.G. Light a organ symbioses in fishes. Crit. Rev. Micr. 1993, 19, 191–216. [Google Scholar] [CrossRef]
- Hendry, T.A.; Freed, L.L. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. MBio 2018, 9, e01033-18. [Google Scholar] [CrossRef]
- McFall-Ngai, M.J.; Ruby, E.G. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial symbiosis. Science 1991, 254, 1491–1494. [Google Scholar] [CrossRef]
- Montgomery, M.K.; McFall-Ngai, M.J. The muscle-derived lens of a squid bioluminescent organ is biochemically convergent with the ocular lens. J. Biol. Chem. 1992, 267, 20999–21003. [Google Scholar] [CrossRef]
- Weis, V.M.; Montgomery, M.K. Enhanced production of ALDH-like proteins in the bacterial light organ of the sepiolid squid Euprymna scolopes. Biol. Bull. 1993, 184, 309–321. [Google Scholar] [CrossRef]
- Fidopiastis, P.M.; Boletzky, S.V. A new niche for Vibrio logei, the predominant light organ symbiont squids in the genus Sepiola. J. Bacteriol. 1998, 180, 59–64. [Google Scholar] [CrossRef]
- Nishiguchi, M.K.; Lopez, J.E. Enlightenment of old ideas from new investigations: More questions regarding the evolution of bacteriogenic light organs in squids. Evol. Dev. 2004, 6, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, G.; Fernandez Alvarez, F.A. Phylogenomics illuminates the evolution of bobtail and bottletail squid (order Sepiolida). Commun. Biol. 2021, 4, 819. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, M.K.; McFall-Ngai, M.J. Embryonic development of the light organ of the sepiolid squid Euprymnascolopes Berry. Biol. Bull. 1993, 184, 296–308. [Google Scholar] [CrossRef]
- Nishiguchi, M.K. Host recognition is responsible for symbiont composition in environmentally transmitted symbiosis. Microb. Ecol. 2002, 44, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Young, R.E. Ventral bioluminescent countershading in midwater cephalopods. Symp. Zool. Soc. Lond. 1977, 38, 161–190. [Google Scholar]
- Moynihan, M. Notes on the behavior of Euprymna scolopes (Cephalopoda: Sepiolidae). Behaviour 1983, 85, 25–41. [Google Scholar] [CrossRef]
- Jones, B.W.; Nishiguchi, M.K. Counterillumination in the hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 2004, 144, 1151–1155. [Google Scholar] [CrossRef]
- Mandel, M.J.; Dunn, A.K. Impact and influence of the natural Vibrio-squid symbiosis in understanding bacterial animal interactions. Front. Microbiol. 2016, 7, 1982. [Google Scholar] [CrossRef]
- McFall-Ngai, M.J. The importance of microbes in animal development: Lessons from the squid-Vibrio symbiosis. Annu. Rev. Microbiol. 2014, 68, 177–194. [Google Scholar] [CrossRef]
- Tischler, A.H.; Hodge-Hanson, K.M.; Visick, K.L. Vibrio fischeri–squid symbiosis. Els. Oceanogr. Ser. 2019, 267, 1–9. [Google Scholar]
- McFall-Ngai, M.J. The Molecular Dialogue Through Ontogeny between a Squid Host and Its Luminous Symbiont. In Cellular Dialogues in the Holobiont; CRC Press: Boca Raton, FL, USA, 2020; pp. 153–171. [Google Scholar]
- Ramesh, C.; Bessho-Uehara, M. Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochem. Photobiol. Sci. 2021, 20, 1547–1562. [Google Scholar] [CrossRef] [PubMed]
- Bose, J.L.; Rosenberg, C.S. Effects of luxCDABEG induction in Vibrio fischeri: Enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch. Microbiol. 2008, 190, 169–183. [Google Scholar] [CrossRef]
- Koch, E.J.; Miyashiro, T.; McFall-Ngai, M.J.; Ruby, E.G. Features governing symbiont persistence in the squid-vibrio association. Mol. Ecol. 2014, 23, 1624–1634. [Google Scholar]
- Kaeding, A.J.; Ast, J.C. Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of Photobacterium mandapamensis. Appl. Environ. Microbiol. 2007, 73, 3173–3182. [Google Scholar] [CrossRef]
- Guerrero-Ferreira, R.; Gorman, C. Characterization of the bacterial diversity in Indo-West Pacific loliginid and sepiolid squid light organs. Microb. Ecol. 2013, 65, 214–226. [Google Scholar] [CrossRef]
- Nishiguchi, M.K.; Ruby, E.G. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in sepiolid squid-Vibrio symbioses. App. Environ. Microb. 1998, 64, 3209–3213. [Google Scholar] [CrossRef]
- Bazhenov, S.V.; Khrulnova, S.A.; Konopleva, M.N.; Manukhov, I.V. Seasonal changes in luminescent intestinal microflora of the fish inhabiting the Bering and Okhotsk seas. FEMS Microbiol. Lett. 2019, 366, 4. [Google Scholar] [CrossRef]
- Jereb, P.; Roper, C.F. Cephalopods of the Indian Ocean. A review. Part, I. Inshore squids (Loliginidae) collected during the international Indian Ocean expedition. Proc. Biol. Soc. Wash. 2006, 119, 91–136. [Google Scholar] [CrossRef]
- Sulak, K.J. Chlorophthalmidae. In Fishes of the North-Eastern Atlantic and the Mediterranean; Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J., Tortonese, E., Eds.; UNESCO: Paris, France, 1984; Volume 1, pp. 412–420. [Google Scholar]
- Battaglia, P.; Ammendolia, G. Influence of lunar phases, winds and seasonality on the stranding of mesopelagic fish in the Strait of Messina (Central Mediterranean Sea). Mar. Ecol. 2017, 38, e12459. [Google Scholar] [CrossRef]
- Liu, P.C.; Chuang, W.H. Infectious gastroenteritis caused by Vibrio harveyi (V. carchariae) in cultured red drum, Sciaenops ocellatus. J. App. Ichthyo. 2003, 19, 59–61. [Google Scholar] [CrossRef]
- Malave-Orengo, E.; Rubio-Marrero, N. Isolation and characterization of bioluminescent bacteria from marine environments of Puerto Rico. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 103–108. [Google Scholar]
- Nealson, K.H. Isolation, identification and manipulation of luminous bacteria. Methods Enzymol. 1978, 57, 153–166. [Google Scholar]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Nicolaus, B.; Finore, I.; Di Marco, G.; Michaud, L.; Lo Giudice, A. Isolation, characterization and optimization of EPSs produced by acold-adapted Marinobacter isolate from Antarctic seawater. Antarct. Sci. 2019, 31, 69–79. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weightmatrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, NY, USA, 1969; pp. 21–132. [Google Scholar]
- Kumar, S. Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem. Biophys. Res. Commun. 1993, 195, 393–399. [Google Scholar] [CrossRef]
- Gentile, G.; De Luca, M.; Denaro, R.; La Cono, V.; Smedile, F.; Scarfì, S.; De Domenico, E.; De Domenico, M.; Yakimov, M.M. PCR-based detection of bioluminescent microbial populations in Tyrrhenian Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 763–767. [Google Scholar] [CrossRef]
- Ruby, E.G.; Lee, K.H. The Vibrio fischeri-Euprymna scolopes light organ association: Current ecological paradigms. App. Environ. Microb. 1998, 64, 805–812. [Google Scholar] [CrossRef]
- Nyholm, S.V.; McFall-Ngai, M.J. Sampling the light-organ microenvironment of Euprymna scolopes: Description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol. Bull. 1998, 195, 89–97. [Google Scholar] [CrossRef]
- Nyholm, S.V.; McFall-Ngai, M.J. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: The first site of symbiont specificity. App. Environ. Microb. 2003, 69, 3932–3937. [Google Scholar] [CrossRef]
- Nyholm, S.V.; McFall-Ngai, M. The winnowing: Establishing the squid-vibrio symbiosis. Nat. Rev. Microb. 2004, 2, 632–642. [Google Scholar] [CrossRef]
- Nyholm, S.V.; McFall-Ngai, M.J. A lasting symbiosis: How the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microb. 2021, 19, 666–679. [Google Scholar] [CrossRef]
- Nyholm, S.V.; Stabb, E.V. Establishment of an animal–bacterial association: Recruiting symbiotic vibrios from the environment. Proc. Natl. Acad. Sci. USA 2000, 97, 10231–10235. [Google Scholar] [CrossRef]
- Nyholm, S.V.; Deplancke, B. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. App. Environ. Microb. 2002, 68, 5113–5122. [Google Scholar] [CrossRef]
- Guerrero-Ferreira, R.C.; Nishiguchi, M.K. Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca: Cephalopoda). Cladistics 2007, 23, 497–506. [Google Scholar] [CrossRef]
- Zamborsky, D.J.; Nishiguchi, M.K. Phylogeographical patterns among Mediterranean sepiolid squids and their Vibrio symbionts: Environment drives specificity among sympatric species. App. Environ. Microb. 2011, 77, 642–649. [Google Scholar] [CrossRef]
- Ruby, E.G. Lessons from a cooperative bacterial-animal association: The Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu. Rev. Microbiol. 1996, 50, 591–624. [Google Scholar] [CrossRef]
- McFall-Ngai, M.; Montgomery, M.K. The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Biol. Bull. 1990, 179, 332–339. [Google Scholar] [CrossRef]
- Montgomery, M.K.; McFall-Ngai, M.J. Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 1994, 120, 1719–1729. [Google Scholar] [CrossRef]
- Nishiguchi, M.K.; Nair, V.S. Evolution of pathogenicity and symbiosis in Vibrionaceae: A combined approach using molecules and physiology. Int. J. Syst. Evol. Microbiol. 2003, 53, 2019–2026. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, V.; Stewart, J. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ. Microb. 2009, 11, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.L.; Young, R.E. Development of symbiotic bioluminescence in a nearshore cephalopod, Euprymna scolopes. Mar. Biol. 1989, 103, 541–546. [Google Scholar] [CrossRef]
- Zari, A.; Ramesh, C.H.; Mohanraju, R. Non-species specific composition of bioluminescent bacteria in non-bioluminescent squid Sepioteuthis lessoniana (Lesson, 1830). Ind. J. Geo Mar. Sci. 2020, 49, 975–981. [Google Scholar]
- Somya, H. Bacterial bioluminescence in chlorophthalmid deep-sea fish: A possible interrelationship between the light organ and the eyes. Experientia 1977, 33, 906–909. [Google Scholar] [CrossRef]
- Dunlap, P.V. Bioluminescence, Microbial. In Encyclopedia of Microbiology; Schaechter, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 45–61. [Google Scholar]
- Saito, Y.; Yamaguchi, A. Contribution of platelet-derived growth factor signaling to retina regeneration in zebrafish. Neurosc. lett. 2020, 727, 134930. [Google Scholar] [CrossRef]
- Thompson, F.L.; Iida, T. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef]
- De la Pena, L.D.; Lavilla-Pitogo, C.R. Luminescent vibrios associated with mortality in pond-cultured shrimp Penaeus monodon in the Philippines: Species composition. Fish Pathol. 2001, 36, 133–138. [Google Scholar] [CrossRef]
- Lin, B.C.; Wang, Z. Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA-1116 and HY01 as Vibrio campbellii. Environ. Microbiol. 2010, 2, 81–89. [Google Scholar] [CrossRef]
- Phuoc, L.H.; Corteel, M. Increased susceptibility of white spot syndrome virus-infected Litopenaeus vannamei to Vibrio campbellii. Environ. Microbiol. 2008, 10, 2718–2727. [Google Scholar] [CrossRef]
- Wang, L.P.; Chen, Y.W. Isolation and identification of Vibrio campbellii as a bacterial pathogen for luminous vibriosis of Litopenaeus vannamei. Aquac. Res. 2015, 46, 395–404. [Google Scholar] [CrossRef]
- Ismailov, A.D.; Aleskerova, L.E. Photobiosensors containing luminescent bacteria. Biochem. Mosc. 2015, 80, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, C.H.; Mohanraju, R. A review on ecology, pathogenicity, genetics and applications of bioluminescent bacteria. J. Terr Mar. Res. 2019, 3, 1–32. [Google Scholar] [CrossRef]
- Kessenikh, A.G.; Novoyatlova, U.S.; Bazhenov, S.V.; Stepanova, E.A.; Khrulnova, S.A.; Gnuchikh, E.Y.; Kotova, V.Y.; Kudryavtseva, A.A.; Bermeshev, M.V.; Manukhov, I.V. Constructing of Bacillus subtilis-Based Lux-Biosensors with the Use of Stress-Inducible Promoters. Int. J. Mol. Sci. 2021, 22, 9571. [Google Scholar] [CrossRef] [PubMed]
- Burtseva, O.; Baulina, O. In vitro Biofilm Formation by Bioluminescent Bacteria Isolated from the Marine Fish Gut. Microb Ecol. 2021, 81, 932–940. [Google Scholar] [CrossRef]
- Wimpee, C.F.; Nadeau, T. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification. App. Environ. Microb. 1991, 57, 1319–1324. [Google Scholar] [CrossRef]
- Makemson, J.C.; Fulayfil, N.R. Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int. J. Syst. Bact. 1997, 47, 1034–1039. [Google Scholar]
Sample | Isolates | Growth Test | ||
---|---|---|---|---|
SWC | TCBS | LSW | LA | |
Neorossia caroli | ||||
Siphon | 5 | 0 | 4 | 5 |
Ventral mantle | 2 | 0 | 2 | 2 |
Mantle invagination | 1 | 0 | 1 | 1 |
Chlorophtalmus agassizii | ||||
Perianal gland | 16 | 1 | 16 | 17 |
Total isolates | 24 | 0 | 22 | 24 |
Strain | AN | Next Relative by GenBank Alignment (AN **, Organism) | Isolation Matrix | Hom § (%) | luxAB Gene |
---|---|---|---|---|---|
Neorossia caroli | |||||
NE1 | ON844119 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | siphon | 99 | + |
NE2 | ON844120 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | ventral | 98 | + |
NE3 | ON844121 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | ventral | 99 | + |
NE4 | ON844122 | NR_115206.1, Photobacterium leiognathi subsp. mandapamensis | siphon | 99 | - |
NE5 | ON844123 | NR_029253.1, Photobacterium leiognathi strain L1 | siphon | 99 | + |
NE6 | ON844124 | NR_029253.1, Photobacterium leiognathi strain L1 | siphon | 99 | + |
NE7 | ON844125 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | siphon | 98 | + |
NE11 | ON844126 | NR_029253.1, Photobacterium leiognathi strain L1 | invagination | 99 | + |
Chlorophtalmus agassizi | |||||
CL2L | ON844127 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 99 | + |
CL7 | ON844128 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 98 | + |
CL8 | ON844129 | NR_115205.1, Photobacterium phosphoreum strain ATCC 11040 | perianal gland | 98 | + |
CL5L | ON844130 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 99 | + |
CLD1 | ON844131 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 99 | + |
CLD2 | ON844142 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 98 | - |
CLD3 | ON844132 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 98 | + |
CLD4 | ON844133 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 98 | + |
CLD5 | ON844134 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 98 | + |
CLD6 | ON844135 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 98 | + |
CLD7 | ON844136 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 99 | + |
CLD8 | ON844137 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 99 | + |
CLD9 | ON844138 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 99 | + |
CLD10 | ON844139 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 99 | + |
CLD11 | ON844140 | NR_113782.1, Vibrio campbellii strain NBRC 15631 | perianal gland | 99 | + |
CLD12 | ON844141 | NR_042852.1, Photobacterium kishitanii strain pjapo.1.1 | perianal gland | 99 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calogero, R.; Rizzo, C.; Arcadi, E.; Stipa, M.G.; Consoli, P.; Romeo, T.; Battaglia, P. Isolation and Identification of Luminescent Bacteria in Deep Sea Marine Organisms from Sicilian Waters (Mediterranean Sea). J. Mar. Sci. Eng. 2022, 10, 1113. https://doi.org/10.3390/jmse10081113
Calogero R, Rizzo C, Arcadi E, Stipa MG, Consoli P, Romeo T, Battaglia P. Isolation and Identification of Luminescent Bacteria in Deep Sea Marine Organisms from Sicilian Waters (Mediterranean Sea). Journal of Marine Science and Engineering. 2022; 10(8):1113. https://doi.org/10.3390/jmse10081113
Chicago/Turabian StyleCalogero, Rosario, Carmen Rizzo, Erika Arcadi, Maria Giulia Stipa, Pierpaolo Consoli, Teresa Romeo, and Pietro Battaglia. 2022. "Isolation and Identification of Luminescent Bacteria in Deep Sea Marine Organisms from Sicilian Waters (Mediterranean Sea)" Journal of Marine Science and Engineering 10, no. 8: 1113. https://doi.org/10.3390/jmse10081113
APA StyleCalogero, R., Rizzo, C., Arcadi, E., Stipa, M. G., Consoli, P., Romeo, T., & Battaglia, P. (2022). Isolation and Identification of Luminescent Bacteria in Deep Sea Marine Organisms from Sicilian Waters (Mediterranean Sea). Journal of Marine Science and Engineering, 10(8), 1113. https://doi.org/10.3390/jmse10081113