A Review of Natural Gas Hydrate Formation with Amino Acids
Abstract
:1. Introduction
2. Effect of Amino Acids Concentration with Different Gas Hydrate Formation Systems
Added Amino Acids | Reaction System | P/MPa | T/K | Concentration/wt% | Ref. |
---|---|---|---|---|---|
Tryptophan | CH4 | 10 | 275.2 | 0.3 | [82] |
Histidine | CH4 | 10 | 275.2 | 1 | [82,84] |
Arginine | CH4 | 10 | 275.2 | 1 | [82] |
Leucine | CH4 | 10 | 275 | 0.5 | [73] |
Leucine | CH4 | 10 | 275.2 | 1 | [53] |
Methionine | CH4 | 5.3 | 275 | 0.5 | [83] |
Phenylalanine | CH4 | 5.3 | 275 | 0.5 | [83] |
Tryptophan | Mixed natural gas | 5 | 283.2 | 0.03 | [53] |
Valine | CH4 + 5.56 mol% THF | 8 | 293.2 | 0.25 | [86] |
Leucine | CH4 + 5.56 mol% THF | 8 | 293.2 | 0.125 | [86] |
Methionine | CH4 + 5.56 mol% THF | 8 | 293.2 | 0.125 | [86] |
Arginine | FW + CH4 + 5.56 mol% THF | 9.5 | 298.2 | 0.05 | [54] |
Leucine | Salt water + CH4 + THF | 5 | 283.2 | 0.03 | [92] |
Arginine | Salt water + CH4 + THF | 5 | 283.2 | 0.01 | [92] |
Arginine | Salt water + CH4 + 5.56 mol %THF | 9.5 | 298.2 | 0.03 | [93] |
Tryptophan | Salt water+ CH4 +5.56 mol %THF | 9.5 | 298.2 | 0.03 | [93] |
Valine | Salt water+ CH4 +5.56 mol %THF | 8 | 288.2 | 0.05 | [94] |
Leucine | Salt water+ CH4 +5.56 mol %THF | 8 | 288.2 | 0.05 | [94] |
Methionine | Salt water+ CH4 +5.56 mol %THF | 8 | 288.2 | 0.05 | [94] |
Tryptophan | Salt water + Mixed natural gas | 7.2 | 283.2 | 0.02 | [95] |
Leucine | Salt water + Mixed natural gas | 7.2 | 283.2 | 0.02 | [95] |
3. Effect of Amino Acids Side Chains on Hydrate Formation
4. Thermodynamic and Kinetic Behaviors of Hydrate Formation with Amino Acids
4.1. Effect of Amino Acids on the Thermodynamic Features of Hydrates
4.2. Effect of Amino Acids on the Kinetics of Hydrate Formation
4.3. Effect of Amino Acids on the Morphology of Hydrate Formation
4.4. Influencing Mechanism of Amino Acids on Hydrate Formation
5. Conclusions and Outlook
- (1)
- Amino acids with high concentrations generally show an inhibitory impact in almost all the thermodynamic tests, while low quantities have no effect. The methane hydrate phase equilibrium curve changes toward the high pressure and low temperature area when high amino acid concentrations are present. At specified concentrations, amino acids have a favorable influence on hydrate formation kinetics, but too high concentrations enhance the pace of hydrate formation at the expense of gas uptake. This might be because high amino acid concentrations cause hydrate formation to occur too quickly, causing the created hydrate to gather heavily on the gas-liquid contact surface, which generates a thicker hydrate layer that increases mass transfer resistance and prevents hydrate formation. As a result, the choice of amino acid is critical.
- (2)
- Low concentrations of amino acids are often favorable for kinetic promotions of hydrate formation, especially when used in combination with other promoters. Future research can be expanded with a wider variety of combined promoters to explore lower addition of additives, faster hydrate formation rates, and higher gas uptake. Stirring in laboratory reactors is effective in reducing the stochasticity of hydrate nucleation, but stirring throughout the whole hydrate production process is not conducive to cost savings. Therefore, the exploration of new semi-stirred reactor systems is an important part of SNG commercialization.
- (3)
- In the presence of amino acids, the morphology of hydrate formation is similar to that of pure water, while yet differing. The nucleation and first formation of hydrates occur at the gas-liquid contact interface, which is similar to pure water. The distinction is that hydrate formation in pure water occurs exclusively at the gas-liquid contact interface, whereas hydrates develop in pore form along the glass tube walls into both gas and liquid phases when amino acids are present. In this paper, the referred morphological study is only conducted at the macroscopic level, and further analysis needs to be performed at the microscopic scale to clarify the mechanism of the contribution of amino acids to the change of hydrate structure.
- (4)
- Low concentration of amino acids can promote hydrate formation because hydrophobic groups can be adsorbed at the hydrate interface, which reduces the interfacial tension between the two phases. In addition, amino acids with long side chains are less likely to form hydrogen bonds with water, and they do not hinder water molecules from clathrate with gas molecules, which can speed up hydrate formation kinetics. The formed hydrates are frequently porous in character in the presence of amino acids, increasing the interaction between the liquid and gas phases through these porous channels under the action of capillary suction. However, further research is needed to fully explain the mechanism by which amino acids stimulate hydrate formation in order to properly choose these types of hydration promoters in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- EIA. Carbon Dioxide Emissions Coefficients [EB/OL]. Available online: https://www.eia.gov/environment/emissions/state/analysis/ (accessed on 27 February 2019).
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Moore, T.A. Coalbed methane: A review. Int. J. Coal. Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Rani, S.; Padmanabhan, E.; Prusty, B.K. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage. J. Pet. Sci. Eng. 2019, 175, 634–643. [Google Scholar] [CrossRef]
- Suarez, A.A. The Expansion of Unconventional Production of Natural Gas (Tight Gas, Gas Shale and Coal Bed Methane). In Advances in Natural Gas Technology, 1st ed.; Hamind, A.A., Ed.; Intech Europe, Janeza Trdine9: Rijeka, Croatia, 2012; pp. 123–146. [Google Scholar]
- BP. Statistical Review of World Energy 2021. [EB/OL]. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 8 July 2021).
- Kvenvolden, K.A. Gas Hydrates—Geological Perspective and Global Change. Rev. Geophys. 1993, 31, 173–187. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, S.; Liu, F.; Li, L.; Dai, X.D. Analysis on World Energy Supply and Demand Outlook in 2040-Based on BP World Energy Prospect (2019 Edition). Nat. Gas Oil 2019, 37, 1–7. [Google Scholar]
- Zou, C.N.; Zhao, Q.; Chen, J.J.; Li, J.; Yang, Z.; Sun, Q.P.; Lu, J.L.; Zhang, G.X. Natural gas in China: Development trend and strategic forecast. Nat. Gas Ind. 2018, 5, 380–390. [Google Scholar] [CrossRef]
- IEO. The International Energy Outlook 2021. [EB/OL]. Available online: https://www.eia.gov/outlooks/ieo/index.php. (accessed on 23 June 2022).
- Wang, X.; Economides, M. Liquefied Natural Gas (LNG). In Natural Gas Processing; Gulf Professional Publishing Company: Houston, TX, USA, 2010; pp. 59–113. [Google Scholar]
- Li, B.; Li, X.S.; Li, G.; Feng, J.C.; Wang, Y. Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator. Appl. Energy 2014, 129, 274–286. [Google Scholar] [CrossRef]
- Babu, P.; Nambiar, A.; He, T.; Karimi, I.A.; Lee, J.D.; Englezos, P.; Linga, P. A Review of Clathrate Hydrate Based Desalination to Strengthen Energy–Water Nexus. ACS Sustain. Chem. Eng. 2018, 6, 8093–8107. [Google Scholar] [CrossRef]
- Park, K.N.; Hong, S.Y.; Lee, J.W.; Kang, K.C.; Lee, Y.C.; Ha, M.G.; Lee, J.D. A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 2011, 274, 91–96. [Google Scholar] [CrossRef]
- Kang, K.C.; Linga, P.; Park, K.N.; Choi, S.J.; Lee, J.D. Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl−, SO42−). Desalination 2014, 353, 84–90. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, D.L.; Li, Z.; Li, J.B. Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases. Energy 2020, 197, 117209. [Google Scholar] [CrossRef]
- Heydari, A.; Peyvandi, K. Study of biosurfactant effects on methane recovery from gas hydrate by CO2 replacement and depressurization. Fuel 2020, 272, 117681. [Google Scholar] [CrossRef]
- Kiyokawa, H.; Horiia, S.; Alavib, S.; Ohmura, R. Improvement of continuous hydrate-based CO2 separation by forming structure II hydrate in the system of H2 + CO2 + H2O + Tetrahydropyran (THP). Fuel 2020, 278, 118330. [Google Scholar] [CrossRef]
- Babu, P.; Linga, P.; Kumar, R.; Englezos, P. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261–279. [Google Scholar] [CrossRef]
- Skiba, S.; Chashchin, D.; Semenov, A.; Yarakhmedov, M.; Vinokurov, V.; Sagidullin, A.; Manakov, A.; Stoporev, A. Hydrate-based separation of the CO2 + H2 mixtures. Phase equilibria with isopropanol aqueous solutions and hydrogen solubility in CO2 hydrate. Int. J. Hydrogen Energy 2021, 46, 32904–32913. [Google Scholar]
- Xie, Y.M.; Li, G.; Liu, D.; Liu, N.; Qi, Y.X.; Liang, D.Q.; Guo, K.H.; Fan, S.S. Experimental study on a small scale of gas hydrate cold storage apparatus. Appl. Energy 2010, 87, 3340–3346. [Google Scholar] [CrossRef]
- Hashemi, H.; Babaee, S.; Mohammadi, A.H.; Naidoo, P.; Ramjugernath, D. State of the art and kinetics of refrigerant hydrate formation. Int. J. Refrig. 2019, 98, 410–427. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.; Kang, Y.T. Experimental investigation on CO2 hydrate formation/dissociation for cold thermal energy harvest and transportation applications. Appl. Energy 2019, 242, 1358–1368. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Kumar, A.; Seo, Y.; Lee, J.D.; Linga, P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl. Energy 2018, 216, 262–285. [Google Scholar] [CrossRef]
- Wu, Q.; Yu, Y.; Zhang, B.Y.; Gao, X.; Zhang, Q. Effect of temperature on safety and stability of gas hydrate during coal mine gas storage and transportation. Saf. Sci. 2019, 118, 264–272. [Google Scholar] [CrossRef]
- Chaturvedi, E.; Prasad, N.; Mandal, A. Enhanced formation of methane hydrate using a novel synthesized anionic surfactant for application in storage and transportation of natural gas. J. Nat. Gas Sci. Eng. 2018, 56, 246–257. [Google Scholar] [CrossRef]
- China Petroleum Pipeline Engineering. In An Overview of the World Pipeline, 1st ed.; Petroleum Industry Press: Beijing, China, 2004; pp. 1–302.
- Khan, M.I.; Yasmin, T.; Shakoor, A. Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew. Sustain. Energy Rev. 2015, 51, 785–797. [Google Scholar] [CrossRef]
- Kumar, S.; Kwon, H.T.; Choi, K.H.; Lim, W.; Cho, J.H.; Tak, K.; Moon, I. LNG: An eco-friendly cryogenic fuel for sustainable development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Wu, Z.J.; Wee, V.; Ma, X.B.; Zhao, D. Adsorbed Natural Gas Storage for Onboard Applications. Adv. Sustain. Syst. 2021, 5, 2000200. [Google Scholar] [CrossRef]
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: Boca Raton, FL, America, 2007; pp. 1–752. [Google Scholar]
- Sloan, D.; Koh, C.A.; Sum, A.K.; Ballard, A.L.; McMullen, N.D.; Shoup, G.; Ballard, A.L.; Palermo, T. Chapter Eight—Conclusion. In Natural Gas Hydrates in Flow Assurance; Sloan, E.D., Ed.; Gulf Professional Publishing Company: Houston, TX, USA, 2010; pp. 163–170. [Google Scholar]
- Li, B.; Chen, L.L.; Wan, Q.C.; Han, X.; Wu, Y.Q.; Luo, Y.J. Experimental study of frozen gas hydrate decomposition towards gas recovery from permafrost hydrate deposits below freezing point. Fuel 2020, 280, 118557. [Google Scholar] [CrossRef]
- Milkov, A.V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth Sci. Rev. 2004, 66, 183–197. [Google Scholar] [CrossRef]
- Li, B.; Zhang, T.T.; Wan, Q.C.; Feng, J.C.; Chen, L.L.; Wei, W.N. Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments. Appl. Energy 2021, 300, 117398. [Google Scholar] [CrossRef]
- Li, B.; Liu, S.D.; Liang, Y.P.; Liu, H. The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media. Appl. Energy 2018, 227, 694–702. [Google Scholar] [CrossRef]
- Wei, W.N.; Li, B.; Gan, Q.; Li, Y.L. Research progress of natural gas hydrate exploitation with CO2 replacement: A review. Fuel 2022, 312, 7321–7336. [Google Scholar] [CrossRef]
- Li, B.; Li, X.S.; Li, G. Kinetic studies of methane hydrate formation in porous media based on experiments in a pilot-scale hydrate simulator and a new model. Chem. Eng. Sci. 2014, 105, 220–230. [Google Scholar] [CrossRef]
- Qureshi, M.F.; Atilhan, M.; Altamash, T.; Aparicio, S.; Aminnaji, M.; Tohidi, B. High-pressure gas hydrate autoclave hydraulic experiments and scale-up modeling on the effect of stirring RPM effect. J. Nat. Gas Sci. Eng. 2017, 38, 50–58. [Google Scholar] [CrossRef]
- Partoon, B.; Sabil, K.M.; Lau, K.K.; Lal, B.; Nasrifar, K. Production of gas hydrate in a semi-batch spray reactor process as a means for separation of carbon dioxide from methane. Chem. Eng. Res. Des. 2018, 138, 168–175. [Google Scholar] [CrossRef]
- Wang, W.X.; Bray, C.L.; Adams, D.J.; Cooper, A.I. Methane Storage in Dry Water Gas Hydrates. J. Am. Chem. Soc. 2008, 130, 11608–11609. [Google Scholar] [CrossRef]
- Majid, A.A.A.; Worley, J.; Koh, C.A. Thermodynamic and Kinetic Promoters for Gas Hydrate Technological Applications. Energy Fuels 2021, 35, 19288–19301. [Google Scholar]
- Wang, F.; Sum, A.K.; Liu, B.; Von Solms, N. Recent Advances in Promoters for Gas Hydrate Formation. Front. Media 2021, 9, 1–78. [Google Scholar]
- Sagidullin, A.; Skiba, S.; Adamova, T.; Stoporev, A.; Strukov, D.; Kartopol’cev, S.; Manakov, A. Humic Acids as a New Type of Methane Hydrate Formation Promoter and a Possible Mechanism for the Hydrate Growth Enhancement. ACS Sustain. Chem. Eng. 2022, 10, 521–529. [Google Scholar]
- Liu, Y.; Chen, B.; Chen, Y.; Zhang, S.; Guo, W.; Cai, Y.; Tan, B.; Wang, W. Methane Storage in a Hydrated Form as Promoted by Leucines for Possible Application to Natural Gas Transportation and Storage. Energy Technol. 2015, 3, 815–819. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Niu, X.C.; Lei, D.J.; Liu, Z.W.; Zhu, Z.M.; Wang, W.X. Boric acid: The first effective inorganic promoter for methane hydrate formation under static conditions. Sustain. Energy Fuels 2020, 4, 4478–4481. [Google Scholar] [CrossRef]
- Denning, S.; Majid, A.A.; Lucero, J.M.; Crawford, J.M.; Carreon, M.A.; Koh, C.A. Metal–Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity. ACS Appl. Mater. Interfaces. 2020, 12, 53510–53518. [Google Scholar] [CrossRef]
- Bishnoi, P.R.; Natarajan, V. Formation and decomposition of gas hydrates. Fluid Phase Equilib. 1996, 117, 168–177. [Google Scholar] [CrossRef]
- Natarajan, V.; Bishnoi, P.R.; Kalogerakis, N. Induction phenomena in gas hydrate nucleation. Chem. Eng. Sci. 1994, 49, 2075–2087. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, S.H.; Lee, W.J. Stochastic nature of carbon dioxide hydrate induction times in Na-montmorillonite and marine sediment suspensions. Int. J. Greenh. Gas Control 2013, 14, 15–24. [Google Scholar] [CrossRef]
- He, Y.Y.; Rudolph, E.S.J.; Zitha, P.L.J.; Golombok, M. Kinetics of CO2 and methane hydrate formation: An experimental analysis in the bulk phase. Fuel 2011, 90, 272–279. [Google Scholar] [CrossRef]
- Hao, W.; Wang, J.; Fan, S.; Hao, W. Study on methane hydration process in a semi-continuous stirred tank reactor. Energy Convers. Manag. 2007, 48, 954–960. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Kumar, A.; Kumar, R.; Linga, P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Appl. Energy 2017, 188, 190–199. [Google Scholar] [CrossRef]
- Bhattacharjee, G.; Prakash Veluswamy, H.P.; Kumar, R.; Linga, P. Rapid methane storage via sII hydrates at ambient temperature. Appl. Energy 2020, 269, 115142. [Google Scholar] [CrossRef]
- Xiao, P.; Yang, X.M.; Sun, C.Y.; Cui, J.L.; Li, N.; Chen, G.J. Enhancing methane hydrate formation in bulk water using vertical reciprocating impact. Chem. Eng. J. 2018, 336, 649–658. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Sowjanya, Y.; Shiva Prasad, K. Micro-Raman investigations of mixed gas hydrates. Vib. Spectrosc. 2009, 50, 319–323. [Google Scholar] [CrossRef]
- Kumar, A.; Daraboina, N.; Kumar, R.; Linga, P. Experimental Investigation To Elucidate Why Tetrahydrofuran Rapidly Promotes Methane Hydrate Formation Kinetics: Applicable to Energy Storage. J. Phys. Chem. C 2016, 120, 29062–29068. [Google Scholar] [CrossRef]
- Lv, Q.; Li, L.; Li, X.S.; Chen, Z.Y. Formation Kinetics of Cyclopentane + Methane Hydrates in Brine Water Systems and Raman Spectroscopic Analysis. Energy Fuels 2015, 29, 6104–6110. [Google Scholar] [CrossRef]
- Lv, Q.N.; Li, X.S.; Chen, Z.Y.; Feng, J.C. Phase Equilibrium and Dissociation Enthalpies for Hydrates of Various Water-Insoluble Organic Promoters with Methane. J. Chem. Eng. 2013, 58, 3249–3253. [Google Scholar] [CrossRef]
- Mohammadi, A.H.; Richon, D. Phase equilibria of binary clathrate hydrates of nitrogen + cyclopentane/cyclohexane/methyl cyclohexane and ethane + cyclopentane/cyclohexane/methyl cyclohexane. Chem. Eng. Sci. 2011, 66, 4936–4940. [Google Scholar] [CrossRef]
- Beheshtimaal, A.; Haghtalab, A. Thermodynamic modeling of hydrate formation conditions using different activity coefficient models in the presence of tetrahydrofuran (THF). Chem. Eng. Res. Des. 2018, 129, 150–159. [Google Scholar] [CrossRef]
- Li, D.L.; Du, J.W.; Fan, S.S.; Liang, D.Q.; Li, X.S.; Huang, N.S. Clathrate dissociation conditions for methane + tetra-n-butyl ammonium bromide (TBAB) + water. J. Chem. Eng. Data 2007, 52, 1916–1918. [Google Scholar] [CrossRef]
- Sun, Z.G.; Sun, L. Equilibrium Conditions of Semi-Clathrate Hydrate Dissociation for Methane plus Tetra-n-butyl Ammonium Bromide. J. Chem. Eng. Data 2010, 55, 3538–3541. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Kumar, S.; Kumar, R.; Rangsunvigit, P.; Linga, P. Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel 2016, 182, 907–919. [Google Scholar] [CrossRef]
- Perez-Lopez, H.I.; Elizalde-Solis, O.; Avendano-Gomez, J.R.; Zuniga-Moreno, A.; Sanchez-Minero, F. Methane Hydrate Formation and Dissociation in Synperonic PE/F127, CTAB, and SDS Surfactant Solutions. J. Chem. Eng. Data 2018, 63, 2477–2485. [Google Scholar] [CrossRef]
- Choudhary, N.; Hande, V.R.; Roy, S.; Chakrabarty, S.; Kumar, R. Effect of Sodium Dodecyl Sulfate Surfactant on Methane Hydrate Formation: A Molecular Dynamics Study. J. Phys. Chem. B 2018, 122, 6536–6542. [Google Scholar] [CrossRef]
- Karaaslan, U.; Parlaktuna, M. Surfactants as hydrate promoters? Energy Fuels 2000, 14, 1103–1107. [Google Scholar] [CrossRef]
- Liu, C.C.; Chou, H.J.; Lin, C.Y.; Janmanchi, D.; Chung, P.W.; Mou, C.Y.; Yu, S.S.F.; Chan, S.I. The oversolubility of methane gas in nano-confined water in nanoporous silica materials. Microporous Mesoporous Mater. 2020, 293, 109793. [Google Scholar] [CrossRef]
- Rahmati-Abkenar, M.; Manteghian, M.; Pahlavanzadeh, H. Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles. Chem. Eng. Res. Des. 2017, 120, 325–332. [Google Scholar] [CrossRef]
- Chari, V.D.; Sharma, D.V.S.G.K.; Prasad, P.S.R.; Murthy, S.R. Methane hydrates formation and dissociation in nano silica suspension. J. Nat. Gas Sci. Eng. 2013, 11, 7–11. [Google Scholar] [CrossRef]
- Zhang, J.S.; Lee, S.; Lee, J.W. Kinetics of methane hydrate formation from SDS solution. Ind. Eng. Chem. Res. 2007, 46, 6353–6359. [Google Scholar] [CrossRef]
- Sun, Z.G.; Wang, R.; Ma, R.; Guo, K.; Fan, S. Natural gas storage in hydrates with the presence of promoters. Energy Convers. Manage. 2003, 44, 2733–2742. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Hong, Q.W.; Linga, P. Morphology Study of Methane Hydrate Formation and Dissociation in the Presence of Amino Acid. Cryst. Growth Des. 2016, 16, 5932–5945. [Google Scholar] [CrossRef]
- Vickery, H.B. The History of the Discovery of the Amino Acids II. A Review of Amino Acids Described Since 1931 as Components of Native Proteins. Adv. Protein Chem. 1972, 26, 81–171. [Google Scholar]
- Jander, G.; Joshi, V. Recent Progress in Deciphering the Biosynthesis of Aspartate-Derived Amino Acids in Plants. Mol. Plant 2010, 3, 54–65. [Google Scholar]
- Khan, M.S.; Bavoh, C.B.; Foo, K.S.; Shariff, A.M.; Kassim, Z.; Othman, N.A.B.; Lal, B.; Ahmed, I.; Rahman, M.A.; Gomari, S.R. Kinetic Behavior of Quaternary Ammonium Hydroxides in Mixed Methane and Carbon Dioxide Hydrates. J. Mar. Sci. Eng. 2021, 26, 275. [Google Scholar] [CrossRef]
- Sa, J.H.; Kwak, G.H.; Lee, B.R.; Park, D.H.; Han, K.; Lee, K.H. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci. Rep. 2013, 3, 2428. [Google Scholar] [CrossRef]
- Sa, J.H.; Lee, B.R.; Park, D.H.; Han, K.; Chun, H.D.; Lee, K.H. Amino acids as natural inhibitors for hydrate formation in CO2 sequestration. Environ. Sci. Technol. 2011, 45, 5885–5891. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Partoon, B.; Lal, B.; Gonfa, G.; Foo Khor, S.; Sharif, A.M. Inhibition effect of amino acids on carbon dioxide hydrate. Chem. Eng. Sci. 2017, 171, 331–339. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Partoon, B.; Lal, B.; Kok Keong, L. Methane hydrate-liquid-vapour-equilibrium phase condition measurements in the presence of natural amino acids. J. Nat. Gas Sci. Eng. 2017, 37, 425–434. [Google Scholar] [CrossRef]
- Sa, J.H.; Kwak, G.H.; Han, K.; Ahn, D.; Cho, S.J.; Lee, J.D.; Lee, K.H. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids. Sci. Rep. 2016, 6, 31582. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Lee, P.Y.; Premasinghe, K.; Linga, P. Effect of Biofriendly Amino Acids on the Kinetics of Methane Hydrate Formation and Dissociation. Ind. Eng. Chem. Res. 2017, 56, 6145–6154. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Kiran, B.S. Clathrate Hydrates of Greenhouse Gases in the Presence of Natural Amino Acids: Storage, Transportation and Separation Applications. Sci. Rep. 2018, 8, 8560. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, G.; Choudhary, N.; Kumar, A.; Chakrabarty, S.; Kumar, R. Effect of the amino acid L-histidine on methane hydrate growth kinetics. J. Nat. Gas Sci. Eng. 2016, 35, 1453–1462. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Bhattacharjee, G.; Liao, J.; Linga, P. Macroscopic Kinetic Investigations on Mixed Natural Gas Hydrate Formation for Gas Storage Application. Energy Fuels 2020, 34, 15257–15269. [Google Scholar] [CrossRef]
- Jeenmuang, K.; Viriyakul, C.; Inkong, K.; Prakash Veluswamy, H.; Kulprathipanja, S.; Rangsunvigit, P.; Linga, P. Enhanced hydrate formation by natural-like hydrophobic side chain amino acids at ambient temperature: A kinetics and morphology investigation. Fuel 2021, 299, 120828. [Google Scholar] [CrossRef]
- Li, R.; Sun, Z.G.; Song, J. Enhancement of hydrate formation with amino acids as promoters. J. Mol. Liq. 2021, 344, 117880. [Google Scholar] [CrossRef]
- Bhattacharjee, G.; Goh, M.N.; Arumuganainar, S.E.K.; Zhang, Y.; Linga, P. Ultra-rapid uptake and the highly stable storage of methane as combustible ice. Energy Environ. Sci. 2020, 13, 4946–4961. [Google Scholar] [CrossRef]
- Chong, Z.R.; Chan, A.H.M.; Babu, P.; Yang, M.; Linga, P. Effect of NaCl on methane hydrate formation and dissociation in porous media. J. Nat. Gas Sci. Eng. 2015, 27, 178–189. [Google Scholar] [CrossRef]
- Zeng, H.P.; Zhang, Y.; Zhang, L.; Chen, Z.Y.; Li, X.S. Effects of the NaCl Concentration and Montmorillonite Content on Formation Kinetics of Methane Hydrate. J. Mar. Sci. Eng. 2022, 10, 548. [Google Scholar] [CrossRef]
- Ren, Z.B.; Liu, D.J.; Liu, Z.Q.; Pan, Z. Influence of sodium chloride on the kinetics of methane hydrate formation in the presence of surfactant. J. Nat. Gas Sci. Eng. 2020, 83, 103622. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Kumar, A.; Kumar, R.; Linga, P. Investigation of the kinetics of mixed methane hydrate formation kinetics in saline and seawater. Appl. Energy 2019, 253, 113515. [Google Scholar] [CrossRef]
- Bhattacharjee, G.; Veluswamy, H.P.; Kumar, R.; Linga, P. Seawater based mixed methane-THF hydrate formation at ambient temperature conditions. Appl. Energy 2020, 271, 115158. [Google Scholar] [CrossRef]
- Inkong, K.; Yodpetch, V.; Veluswamy, H.P.; Kulprathipanja, S.; Rangsunvigit, P.; Linga, P. Hydrate-Based Gas Storage Application Using Simulated Seawater in the Presence of a Co-Promoter: Morphology Investigation. Energy Fuels 2022, 36, 1100–1113. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Linga, P. Natural Gas Hydrate Formation Using Saline/Seawater for Gas Storage Application. Energy Fuels 2021, 35, 5988–6002. [Google Scholar] [CrossRef]
- Nasir, Q.; Suleman, H.; Elsheikh, Y.A. A review on the role and impact of various additives as promoters/inhibitors for gas hydrate formation. J. Nat. Gas Sci. Eng. 2020, 76, 103211. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Nashed, O.; Khan, M.S.; Partoon, B.; Lal, B.; Sharif, A.M. The impact of amino acids on methane hydrate phase boundary and formation kinetics. J. Chem. Thermodyn. 2018, 117, 48–53. [Google Scholar] [CrossRef]
- Partoon, B.; Malik, S.N.A.; Azemi, M.H.; Sabil, K.M. Experimental investigations on the potential of SDS as low-dosage promoter for carbon dioxide hydrate formation. Asia-Pac. J. Chem. Eng. 2013, 8, 916–921. [Google Scholar] [CrossRef]
- Cai, Y.H.; Chen, Y.L.; Li, Q.J.; Li, L.; Huang, H.X.; Wang, S.Y.; Wang, W.X. CO2 Hydrate Formation Promoted by a Natural Amino Acid L-Methionine for Possible Application to CO2 Capture and Storage. Energy Technol. 2017, 5, 1195–1199. [Google Scholar] [CrossRef]
- Naeiji, P.; Arjomandi, A.; Varaminian, F. Amino acids as kinetic inhibitors for tetrahydrofuran hydrate formation: Experimental study and kinetic modeling. J. Nat. Gas Sci. Eng. 2014, 21, 64–70. [Google Scholar] [CrossRef]
- Roosta, H.; Dashti, A.; Mazloumi, S.H.; Varaminian, F. Inhibition properties of new amino acids for prevention of hydrate formation in carbon dioxide-water system: Experimental and modeling investigations. J. Mol. Liq. 2016, 215, 656–663. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Khan, M.S.; Lal, B.; Bt Abdul Ghaniri, N.I.; Sabil, K.M. New methane hydrate phase boundary data in the presence of aqueous amino acids. Fluid Phase Equilib. 2018, 478, 129–133. [Google Scholar] [CrossRef]
- Rossi, F.; Gambelli, A.M. Thermodynamic phase equilibrium of single-guest hydrate and formation data of hydrate in presence of chemical additives: A review. Fluid Phase Equilib. 2021, 536, 112958. [Google Scholar] [CrossRef]
- Mannar, N.; Bavoh, C.B.; Baharudin, A.H.; Lal, B.; Mellon, N.B. Thermophysical properties of aqueous lysine and its inhibition influence on methane and carbon dioxide hydrate phase boundary condition. Fluid Phase Equilib. 2017, 454, 57–63. [Google Scholar] [CrossRef]
- Laage, D.; Stirnemann, G.; Sterpone, F.; Rey, R.; Hynes, J.T. Reorientation and Allied Dynamics in Water and Aqueous Solutions. Annu. Rev. Phys. Chem. 2011, 62, 395–416. [Google Scholar] [CrossRef]
- Pertsemlidis, A.; Saxena, A.M.; Soper, A.K.; HeadGordon, T.; Glaeser, R.M. Direct evidence for modified solvent structure within the hydration shell of a hydrophobic amino acid. Proc. Natl. Acad. Sci. USA 1996, 93, 10769–10774. [Google Scholar] [CrossRef]
- Burla, S.K.; Pinnelli, S.R.P.; Sain, K. Explicating the amino acid effects for methane storage in hydrate form. Rsc Adv. 2022, 12, 10178–10185. [Google Scholar] [CrossRef]
- Gaikwad, N.; Bhattacharjee, G.; Sangwai, J.S.; Kumar, R.; Linga, P. Kinetic and Morphology Study of Equimolar CO2–CH4 Hydrate Formation in the Presence of Cyclooctane and l-Tryptophan. Energy Fuels 2021, 35, 636–648. [Google Scholar] [CrossRef]
- Sun, T.J.; Davies, P.L.; Walker, V.K. Structural Basis for the Inhibition of Gas Hydrates by α-Helical Antifreeze Proteins. Biophys. J. Vol. 2015, 109, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.A.; Babu, P.; Kumar, R.; Linga, P. Morphology of Carbon Dioxide-Hydrogen-Cyclopentane Hydrates with or without Sodium Dodecyl Sulfate. Cryst. Growth Des. 2013, 13, 2047–2059. [Google Scholar] [CrossRef]
- Chen, Y.L.; Cai, Y.H.; Cai, S.B.; Wang, W.X. Mechanism of L-leucine in promoting methane hydrate formation by molecular dynamic simulation. In Proceedings of the 2015 International Conference on Materials Engineering and Environmental Science, London, UK, 30 March 2015. [Google Scholar]
Classification of Amino Acids | Aliphatic Amino Acids | Aromatic Amino Acids | Heterocyclic Amino Acids | Heterocyclic Imino Acids |
---|---|---|---|---|
Non-polar amino acids (hydrophobic) | Alanine (Ala) Valine (Val) Leucine (Leu) Isoleucine (Ile) Methionine (Met) | Phenylalanine (Phe) Tryptophan (Trp) | / | Proline (Pro) |
Polar amino acids (hydrophilic) | Glycine (Gly) Serine (Ser) Threonine (Thr) Cysteine (Cys) Asparagine (Asn) Glutamine (Gln) Selenocysteine (Sec) Lysine (Lys) Arginine (Arg) Aspartic acid (Asp) Glutamic acid (Glu) | Tyrosine (Tyr) | Pyrrole lysine (Pyl) Histidine (His) | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Lu, Y.-Y.; Li, Y.-L. A Review of Natural Gas Hydrate Formation with Amino Acids. J. Mar. Sci. Eng. 2022, 10, 1134. https://doi.org/10.3390/jmse10081134
Li B, Lu Y-Y, Li Y-L. A Review of Natural Gas Hydrate Formation with Amino Acids. Journal of Marine Science and Engineering. 2022; 10(8):1134. https://doi.org/10.3390/jmse10081134
Chicago/Turabian StyleLi, Bo, You-Yun Lu, and Yuan-Le Li. 2022. "A Review of Natural Gas Hydrate Formation with Amino Acids" Journal of Marine Science and Engineering 10, no. 8: 1134. https://doi.org/10.3390/jmse10081134
APA StyleLi, B., Lu, Y. -Y., & Li, Y. -L. (2022). A Review of Natural Gas Hydrate Formation with Amino Acids. Journal of Marine Science and Engineering, 10(8), 1134. https://doi.org/10.3390/jmse10081134