Dynamic Neuro-Fuzzy Systems for Forecasting El Niño Southern Oscillation (ENSO) Using Oceanic and Continental Climate Parameters as Inputs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
Ref | Input Variables | Description | Datasets | Source |
---|---|---|---|---|
X1 | Niño3 | Average SST anomalies average over 5° S–5° N and 150°–90° W | HadISST1 | NOAA PSL [57] |
X2 | Niño3.4 | Average SST anomalies average over 5° S–5° N and 170°–120° W | HadISST1 | NOAA PSL [57] |
X3 | SOI | Normalized pressure difference between Tahiti (equatorial of Pacific) and Darwin (east of Pacific), which then standardized itself | CRU | NOAA PSL/CRU [46] |
X4 | DMI | Difference of anomalous SST between western equatorial Indian Ocean (50°–70° E and 10° S–10° N) and south equatorial Indian Ocean (90°–110° E and 10° S–10° N) | HadISST1.1 [55] | NOAA PSL |
X5 | ONI | Past 3 months moving average of Niño 3.4 index based on centered 30-year base period updated every 5 years | ERSSTv5 and ERSSTv3 [58] | NOAA PSL |
X6–X8 | BEST | Standardized sum of SOI and Niño 3.4 index in moving average of past 1, 3, and 5 months, respectively. | HadISST1.1 [57] | NOAA PSL [55] |
X9 | MEI v2 | Computed as leading principal component time series using the empirical orthogonal function (EOF) of standardized anomalies of sea level pressure, sea surface temperature, zonal and meridional wind component, and outgoing longwave over (30° S–30° N and 100° E–70° W) | NOAA CDR and JRA-55 global reanalysis [59] | NOAA PSL |
X10 | TNI | Standardized difference between Niño1+2 and Niño 4 with past 5-month moving average | HadISST1 [57] | NOAA PSL [45] |
X11 | PDO | Standardized principal component time series using EOF of SST anomalies over North Pacific (poleward of 20° N) | HadISST1.1 and ERSSTv5 [57,58] | NOAA PSL |
X12 | PNA | Rotated Principal Component Analysis (RPCA) based on anomalies of geopotential height fields at 500 mb over 20°–90° N | CDAS [60] | NOAA CPC |
X13 | OLR | Anomalies of the outgoing long wave over central equatorial Pacific (160° E–160° W) | CDAS/Reanalysis [60] | NOAA CPC |
X14–X16 | Heat Content | Pacific integrated temperature anomalies at 0 to 300 m over 3 regions, 160° E–80° W, 130° E–80° W, and 180°–100° W | GODAS [61] | NOAA CPC |
X17 | 200 mb Wind | Zonal average wind anomalies over 2.5° S–2.5° N and 165°–100° W at the altitude of air pressure 200 millibars equivalence | CDAS/Reanalysis [60] | NOAA PSL |
X18–X20 | 850 mb Trade Wind Index | Zonal average wind anomalies over 3 regions over 5° S–5° N, southwest pacific (135° E–180° W), south central pacific (175° W–140° W) and southeast pacific (135° E–120° W) at the altitude of air pressure 850 millibars equivalence | CDAS/Reanalysis [60] | NOAA CPC |
X21 | ESPI | Normalized sum of precipitation index EI and LI | GPCP v2.2 [48] | NOAA PSL |
X22 | EI | Rainfall anomalies over eastern Pacific, 10° S–10° N and 160° E–100° W | GPCP v2.2 [48] | NOAA PSL |
X23 | LI | Rainfall anomalies over Maritime Continent, 10° S–10° N and 90° E–150° E | GPCP v2.2 [48] | NOAA PSL |
X24 | QBO50 | Lower stratospheric, downward propagating zonally average wind at the equator with equivalent pressure of 50 hPa | CDAS/Reanalysis [60] | NOAA CPC |
X25 | QBO30 | Lower stratospheric, downward propagating zonally average wind at the equator with equivalent pressure of 30 hPa | CDAS/Reanalysis [60] | NOAA CPC |
2.2. Model Description
2.3. Input Data Selection and Model Development
2.4. Performance Criterion
3. Results and Discussion
3.1. Input Selection
3.2. Forecasting of the ENSO Event up to 3-Months Ahead
3.3. Sensitivity Analysis of Climatic Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bjerknes, J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 1966, 18, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- Wang, C.; Deser, C.; Yu, J.Y.; DiNezio, P.; Clement, A. El Niño and southern oscillation (ENSO): A review. Coral Reefs East. Trop. Pac. 2017, 8, 85–106. [Google Scholar]
- Cai, W.; Santoso, A.; Wang, G.; Yeh, S.W.; An, S.I.; Cobb, K.M.; Collins, M.; Guilyardi, E.; Jin, F.F.; Kug, J.S. ENSO and greenhouse warming. Nat. Clim. Change 2015, 5, 849–859. [Google Scholar] [CrossRef]
- Allan, R.; Lindesay, J.; Parker, D. El Niño southern oscillation and climatic variability. Oceanogr. Lit. Rev. 1997, 6, 555. [Google Scholar]
- Hoerling, M.P.; Kumar, A.; Zhong, M. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 1997, 10, 1769–1786. [Google Scholar] [CrossRef]
- Okumura, Y.M.; Deser, C. Asymmetry in the duration of El Niño and La Niña. J. Clim. 2010, 23, 5826–5843. [Google Scholar] [CrossRef] [Green Version]
- Sazib, N.; Mladenova, l.E.; Bolten, J.D. Assessing the impact of ENSO on agriculture over Africa using earth observation data. Front. Sustain. Food Syst. 2020, 4, 509914. [Google Scholar] [CrossRef]
- Nobre, G.G.; Muis, S.; Veldkamp, T.I.; Ward, P.J. Achieving the reduction of disaster risk by better predicting impacts of El Niño and La Niña. Prog. Disaster Sci. 2019, 2, 100022. [Google Scholar] [CrossRef]
- Anyamba, A.; Chretien, J.P.; Britch, S.C.; Soebiyanto, R.P.; Small, J.L.; Jepsen, R.; Forshey, B.M.; Sanchez, J.L.; Smith, R.D.; Harris, R. Global disease outbreaks associated with the 2015–2016 El Niño event. Sci. Rep. 2019, 9, 1930. [Google Scholar] [CrossRef] [Green Version]
- Barkley, H.C.; Cohen, A.L.; Mollica, N.R.; Brainard, R.E.; Rivera, H.E.; DeCarlo, T.M.; Lohmann, G.P.; Drenkard, E.J.; Alpert, A.E.; Young, C.W. Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016). Commun. Biol. 2018, 1, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barni, P.E.; Rego, A.C.M.; Silva, F.d.C.F.; Lopes, R.A.S.; Xaud, H.A.M.; Xaud, M.R.; Barbosa, R.I.; Fearnside, P.M. Logging Amazon forest increased the severity and spread of fires during the 2015–2016 El Niño. For. Ecol. Manag. 2021, 500, 119652. [Google Scholar] [CrossRef]
- Ma, F.; Ye, A.; You, J.; Duan, Q. 2015–2016 floods and droughts in China, and its response to the strong El Niño. Sci. Total Environ. 2018, 627, 1473–1484. [Google Scholar] [CrossRef] [PubMed]
- Latif, M.; Anderson, D.; Barnett, T.; Cane, M.; Kleeman, R.; Leetmaa, A.; O’Brien, J.; Rosati, A.; Schneider, E. A review of the predictability and prediction of ENSO. J. Geophys. Res. Ocean. 1998, 103, 14375–14393. [Google Scholar] [CrossRef]
- Plisnier, P.; Serneels, S.; Lambin, E. Impact of ENSO on East African ecosystems: A multivariate analysis based on climate and remote sensing data. Glob. Ecol. Biogeogr. 2000, 9, 481–497. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T.P. Interdecadal modulation of ENSO teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2726. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, P.H.; Moore, R.; Fleming, S.W.; Zawadzki, A. Pacific decadal oscillation and the hydroclimatology of western Canada—Review and prospects. Can. Water Resour. J. 2010, 35, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Norel, M.; Kałczyński, M.; Pińskwar, I.; Krawiec, K.; Kundzewicz, Z.W. Climate Variability Indices—A Guided Tour. Geosciences 2021, 11, 128. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef]
- Wu, A.; Hsieh, W.W.; Tang, B. Neural network forecasts of the tropical Pacific sea surface temperatures. Neural Netw. 2006, 19, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Graham, N.E.; Michaelsen, J.; Barnett, T.P. An investigation of the El Niño-Southern Oscillation cycle with statistical models: 2. Model results. J. Geophys. Res. Ocean. 1987, 92, 14271–14289. [Google Scholar] [CrossRef]
- Jin, E.K.; Kinter, J.L.; Wang, B.; Park, C.K.; Kang, I.S.; Kirtman, B.; Kug, J.S.; Kumar, A.; Luo, J.J.; Schemm, J. Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim. Dyn. 2008, 31, 647–664. [Google Scholar] [CrossRef]
- Duan, W.; Zhao, P.; Hu, J.; Xu, H. The role of non-linear forcing singular vector tendency error in causing the “spring predictability barrier” for ENSO. J. Meteorol. Res. 2016, 30, 853–866. [Google Scholar] [CrossRef]
- Webster, P. The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteorol. Atmos. Phys. 1995, 56, 33–55. [Google Scholar] [CrossRef]
- Mu, M.; Xu, H.; Duan, W. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys. Res. Lett. 2007, 34, L03709. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Kumar, A.; Juang, H.M.H.; Schemm, J.K.; Wang, W.; Yang, F.; Hong, S.Y.; Peng, P.; Chen, W.; Moorthi, S. NCEP dynamical seasonal forecast system 2000. Bull. Am. Meteorol. Soc. 2002, 83, 1019–1038. [Google Scholar] [CrossRef]
- Mason, S.J.; Goddard, L.; Graham, N.E.; Yulaeva, E.; Sun, L.; Arkin, P.A. The IRI seasonal climate prediction system and the 1997/1998 El Niño event. Bull. Am. Meteorol. Soc. 1999, 80, 1853–1874. [Google Scholar] [CrossRef] [Green Version]
- Barnston, A.G.; Tippett, M.K.; L’Heureux, M.L.; Li, S.; DeWitt, D.G. Skill of real-time seasonal ENSO model predictions during 2002–2011: Is our capability increasing? Bull. Am. Meteorol. Soc. 2012, 93, 631–651. [Google Scholar] [CrossRef]
- Hong, M.; Zhang, R.; Wang, D.; Feng, M.; Wang, Z.; Singh, V.P. Reconstruction of a dynamical–statistical forecasting model of the ENSO index based on the improved self-memorization principle. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 101, 14–26. [Google Scholar] [CrossRef]
- Tao, L.; Duan, W. Using a non-linear forcing singular vector approach to reduce model error effects in ENSO forecasting. Weather Forecast. 2019, 34, 1321–1342. [Google Scholar]
- Tao, L.; Duan, W.; Vannitsem, S. Improving forecasts of El Niño diversity: A non-linear forcing singular vector approach. Clim. Dyn. 2020, 55, 739–754. [Google Scholar] [CrossRef]
- Mu, B.; Qin, B.; Yuan, S. ENSO-ASC 1.0. 0: ENSO deep learning forecast model with a multivariate air–sea coupler. Geosci. Model Dev. 2021, 14, 6977–6999. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, R.H. A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses. Adv. Atmos. Sci. 2022, 39, 889–902. [Google Scholar] [CrossRef]
- Tangang, F.; Hsieh, W.; Tang, B. Forecasting the equatorial Pacific sea surface temperatures by neural network models. Clim. Dyn. 1997, 13, 135–147. [Google Scholar] [CrossRef]
- Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Nayak, P.C.; Sudheer, K.; Rangan, D.; Ramasastri, K. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 291, 52–66. [Google Scholar] [CrossRef]
- Nawaz, N.; Harun, S.; Talei, A. Application of adaptive network-based fuzzy inference system (ANFIS) for river stage prediction in a tropical catchment. Appl. Mech. Mater. 2015, 735, 195–199. [Google Scholar] [CrossRef]
- Mekanik, F.; Imteaz, M.; Talei, A. Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals. Clim. Dyn. 2016, 46, 3097–3111. [Google Scholar] [CrossRef]
- Shiri, J.; Sadraddini, A.A.; Nazemi, A.H.; Kisi, O.; Marti, P.; Fard, A.F.; Landeras, G. Evaluation of different data management scenarios for estimating daily reference evapotranspiration. Hydrol. Res. 2013, 44, 1058–1070. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.B.; Li, Q.F.; Ngoc, T.A.; Hiramatsu, K. Adaptive neuro-fuzzy inference system for drought forecasting in the Cai River basin in Vietnam. J. Fac. Agric. Kyushu Univ. 2015, 60, 405–415. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; Parmar, K.S.; Soni, K.; Kisi, O. Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Comput. Appl. 2021, 33, 2853–2871. [Google Scholar] [CrossRef]
- Nguyen, P.K.T.; Chua, L.H.C.; Talei, A.; Chai, Q.H. Water level forecasting using neuro-fuzzy models with local learning. Neural Comput. Appl. 2018, 30, 1877–1887. [Google Scholar] [CrossRef]
- Talei, A.; Chua, L.H.C.; Quek, C.; Jansson, P.E. Runoff forecasting using a Takagi–Sugeno neuro-fuzzy model with online learning. J. Hydrol. 2013, 488, 17–32. [Google Scholar] [CrossRef]
- Gergis, J.L.; Fowler, A.M. Classification of synchronous oceanic and atmospheric El Niño-Southern Oscillation (ENSO) events for palaeoclimate reconstruction. Int. J. Climatol. A 2005, 25, 1541–1565. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Stepaniak, D.P. Indices of el Niño evolution. J. Clim. 2001, 14, 1697–1701. [Google Scholar] [CrossRef] [Green Version]
- Ropelewski, C.F.; Jones, P.D. An extension of the Tahiti-Darwin southern oscillation index. Mon. Weather Rev. 1987, 115, 2161–2165. [Google Scholar] [CrossRef] [Green Version]
- Arkin, P.A. The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation. Mon. Weather Rev. 1982, 110, 1393–1404. [Google Scholar] [CrossRef]
- Curtis, S.; Adler, R. ENSO indices based on patterns of satellite-derived precipitation. J. Clim. 2000, 13, 2786–2793. [Google Scholar] [CrossRef]
- Gray, W.M.; Sheaffer, J.D.; Knaff, J.A. Influence of the stratospheric QBO on ENSO variability. J. Meteorol. Soc. Japan. Ser. II 1992, 70, 975–995. [Google Scholar] [CrossRef] [Green Version]
- Tian, E.W.; Su, H.; Tian, B.; Jiang, J.H. Interannual variations of water vapor in the tropical upper troposphere and the lower and middle stratosphere and their connections to ENSO and QBO. Atmos. Chem. Phys. 2019, 19, 9913–9926. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.L. Resonance of baroclinic waves in the tropical oceans: The Indian Ocean and the far western Pacific. Dyn. Atmos. Ocean. 2020, 89, 101119. [Google Scholar] [CrossRef]
- Schneider, N.; Cornuelle, B.D. The forcing of the Pacific decadal oscillation. J. Clim. 2005, 18, 4355–4373. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar] [CrossRef]
- Saji, N.; Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global climate. Clim. Res. 2003, 25, 151–169. [Google Scholar] [CrossRef]
- Smith, C.A.; Sardeshmukh, P.D. The effect of ENSO on the intraseasonal variance of surface temperatures in winter. Int. J. Climatol. A 2000, 20, 1543–1557. [Google Scholar] [CrossRef]
- Mekanik, F.; Imteaz, M. Variability of cool seasonal rainfall associated with Indo-Pacific climate modes: Case study of Victoria, Australia. J. Water Clim. Change 2018, 9, 584–597. [Google Scholar] [CrossRef]
- Rayner, N.; Parker, D.E.; Horton, E.; Folland, C.K.; Alexander, L.V.; Rowell, D.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Japan. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Behringer, D.W.; Ji, M.; Leetmaa, A. An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Weather Rev. 1998, 126, 1013–1021. [Google Scholar] [CrossRef]
- Kasabov, N.K.; Song, Q. DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 2002, 10, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Mamdani, E. Applications of fuzzy algorithms for simple dynamic plant. Porc. IEEE 1974, 121, 1585–1588. [Google Scholar] [CrossRef]
- Chang, T.K.; Talei, A.; Chua, L.H.; Alaghmand, S. The impact of training data sequence on the performance of neuro-fuzzy rainfall-runoff models with online learning. Water 2018, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Kwin, C.T.; Talei, A.; Alaghmand, S.; Chua, L.H. Rainfall-runoff modeling using dynamic evolving neural fuzzy inference system with online learning. Procedia Eng. 2016, 154, 1103–1109. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.Y.; Yu, J.Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Duan, W.; Wei, C. The spring predictability barrier for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int. J. Climatol. 2013, 33, 1280–1292. [Google Scholar] [CrossRef]
- Pinault, J.L. Long wave resonance in tropical oceans and implications on climate: The Pacific Ocean. Pure Appl. Geophys. 2016, 173, 2119–2145. [Google Scholar] [CrossRef]
- Yu, J.Y.; Kim, S.T. Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Clim. 2011, 24, 708–720. [Google Scholar] [CrossRef]
Variables | Niño 3 | Niño 3.4 | SOI | DMI | ONI | BEST | MEI | TNI | PDO | PNA | OLR | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Forecasting Lead Time | 1-Month Average | 3-Month Average | 5-Month Average | |||||||||||
1-month | 0.230 | 0.327 | 0.289 | 0.040 * | 0.321 | 0.353 | 0.342 | 0.307 | 0.305 | 0.295 | 0.266 | 0.071 * | 0.178 | |
2-month | 0.216 | 0.304 | 0.263 | 0.060 * | 0.287 | 0.323 | 0.303 | 0.258 | 0.292 | 0.246 | 0.265 | 0.094 | 0.159 | |
3-month | 0.192 | 0.270 | 0.261 | 0.094 | 0.240 | 0.300 | 0.256 | 0.205 | 0.265 | 0.207 | 0.248 | 0.097 | 0.144 | |
Heat content | 200 mb Wind | 850 mb Trade Wind | ESPI | EI (ESPI) | LI (ESPI) | QBO50 | QBO30 | |||||||
130° E–80° W | 160° E–80° W | 180° E–100° W | 135° E–180° W | 175° W–140° W | 135° W–120° W | |||||||||
1-month | 0.286 | 0.340 | 0.364 | 0.222 | 0.317 | 0.200 | 0.006 * | 0.185 | 0.102 | 0.268 | 0.044 * | 0.009 * | ||
2-month | 0.314 | 0.358 | 0.382 | 0.188 | 0.296 | 0.169 | 0.012 * | 0.177 | 0.102 | 0.249 | 0.017 * | 0.008 * | ||
3-month | 0.328 | 0.357 | 0.379 | 0.163 | 0.290 | 0.174 | 0.003 * | 0.173 | 0.088 | 0.257 | 0.003 * | 0.019 * |
Forecast | Rank | Variables Combination | Overall Accuracy |
---|---|---|---|
Output (t + 1) | 1 | DMI, ONI, BEST (1 month), MEI, Heat Content (160° E–80° W), Trade Wind (175° W–140° W) | 78.57% |
2 | Niño 3.4, DMI, MEI, Heat Content (130° E–80° W), Heat Content (180° E–100° W), Trade Wind (175° W–140° W) | 76.79% | |
3 | Niño 3, BEST (3 months), BEST (5 months), Heat Content (130° E–80° W), Heat Content (160° E–80° W), ESPI | 75.89% | |
4 | BEST (1 month), BEST (3 months), BEST (5 months), MEI, Heat Content (130° E–80° W), Heat Content (160° E–80° W) | 75.89% | |
5 | BEST (5 months), MEI, TNI, Heat Content (130° E–80° W), Heat Content (160° E–80° W) | 75.89% | |
Output (t + 2) | 1 | BEST (1 month), MEI, TNI, PNA, Heat Content (130° E–80° W), Trade Wind (175° W–140° W) | 74.11% |
2 | Niño 3, SOI, BEST (5 months), PNA, Heat Content (130° E–80° W), 200 mb wind | 72.32% | |
3 | Niño 3, BEST (1 month), MEI, TNI, PNA, (160° E–80° W) | 72.32% | |
4 | Niño 3, ONI, MEI, PNA, Heat Content (180° E–100° W), Trade Wind (175° W–140° W) | 71.43% | |
5 | Niño 3, BEST (1 month), MEI, PNA, Heat Content (180° E–100° W), 200 mb wind | 71.43% | |
Output (t + 3) | 1 | SOI, ONI, MEI, PDO, Heat Content (130° E–80° W), Heat Content (180° E–100° W) | 71.43% |
2 | Niño 3, SOI, BEST (3 months), MEI, PDO, Heat Content (130° E–80° W) | 69.64% | |
3 | SOI, DMI, BEST (3 months), Heat Content (180° E–100° W), 200 mb wind, Trade Wind (135° W–180° W) | 69.64% | |
4 | Niño 3, Niño 3.4, BEST (3 months), BEST (5 months), PNA, Heat Content (130° E–80° W) | 68.75% | |
5 | Niño 3, BEST (1 month), MEI, PNA, Heat Content (130° E–80° W), Trade Wind (175° W–140° W) | 67.86% |
Number (Priority) | Recommended Combination of Variables for Forecasting * | ||
---|---|---|---|
Output (t + 1) | Output (t + 2) | Output (t + 3) | |
1 | Heat (160° E–80° W)/(130° E–80° W) | Heat (130° E–80° W)/(160° E–80° W)/(180° W–100° W) | Heat (130° E–80° W)/(160° E–80° W) |
2 | Heat (130° E–80° W)/(180° W–100° W)/ONI/Niño 3/Niño 3.4/BEST (5 months/3 months) | Trade Wind (175° W–140° W)/200 mb wind/LI/ESPI | MEI/BEST (5 months) |
3 | Trade Wind (175° W–140° W)/200 mb wind/ESPI/QBO30 | PNA | PNA/PDO |
4 | MEI/BEST (5 months) | MEI/BEST (5 months) | SOI |
5 | DMI/TNI | SOI/BEST (3 months/1 month) | BEST (5 months/3 months/1 month)/TNI/DMI/Heat (160° E–80° W) |
6 | BEST (5 months/3 months/1 month)/SOI | Niño 3/TNI | BEST (5 months/3 months/1 month)/TNI/DMI/Heat (160° E–80° W) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.Z.; Mekanik, F.; Talei, A. Dynamic Neuro-Fuzzy Systems for Forecasting El Niño Southern Oscillation (ENSO) Using Oceanic and Continental Climate Parameters as Inputs. J. Mar. Sci. Eng. 2022, 10, 1161. https://doi.org/10.3390/jmse10081161
Lee MZ, Mekanik F, Talei A. Dynamic Neuro-Fuzzy Systems for Forecasting El Niño Southern Oscillation (ENSO) Using Oceanic and Continental Climate Parameters as Inputs. Journal of Marine Science and Engineering. 2022; 10(8):1161. https://doi.org/10.3390/jmse10081161
Chicago/Turabian StyleLee, Ming Ze, Fatemeh Mekanik, and Amin Talei. 2022. "Dynamic Neuro-Fuzzy Systems for Forecasting El Niño Southern Oscillation (ENSO) Using Oceanic and Continental Climate Parameters as Inputs" Journal of Marine Science and Engineering 10, no. 8: 1161. https://doi.org/10.3390/jmse10081161
APA StyleLee, M. Z., Mekanik, F., & Talei, A. (2022). Dynamic Neuro-Fuzzy Systems for Forecasting El Niño Southern Oscillation (ENSO) Using Oceanic and Continental Climate Parameters as Inputs. Journal of Marine Science and Engineering, 10(8), 1161. https://doi.org/10.3390/jmse10081161