Wave-Current Impact on Shear Stress Patterns around 3D Shallow Bedforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. MODEX Experiment
2.2. SWASH Model
2.3. Model Analysis
3. Results
Current-to-Wave Ratios and Amplified Bed Shear Stress
4. Discussion
Controls on Spatial Bed Shear Stress Amplification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vousdoukas, M.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.P.; Feyen, L. Sandy Coastlines under Threat of Erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Masselink, G.; Coco, G.; Short, A.D.; Castelle, B.; Rogers, K.; Anthony, E.; Green, A.N.; Kelley, J.T.; Pilkey, O.H.; et al. Sandy Beaches Can Survive Sea-Level Rise. Nat. Clim. Chang. 2020, 10, 993–995. [Google Scholar] [CrossRef]
- Stronkhorst, J.; Huisman, B.; Giardino, A.; Santinelli, G.; Santos, F.D. Sand Nourishment Strategies to Mitigate Coastal Erosion and Sea Level Rise at the Coasts of Holland (The Netherlands) and Aveiro (Portugal) in the 21st Century. Ocean Coast. Manag. 2018, 156, 266–276. [Google Scholar] [CrossRef]
- Bergillos, R.J.; Rodríguez-Delgado, C.; Ortega-Sánchez, M. Advances in Management Tools for Modeling Artificial Nourishments in Mixed Beaches. J. Mar. Syst. 2017, 172, 1–13. [Google Scholar] [CrossRef]
- Luijendijk, A.P.; Ranasinghe, R.; de Schipper, M.A.; Huisman, B.A.; Swinkels, C.M.; Walstra, D.J.R.; Stive, M.J.F. The Initial Morphological Response of the Sand Engine: A Process-Based Modelling Study. Coast. Eng. 2017, 119, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Stive, M.J.F.; de Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.J.; van Gelder-Maas, C.; van Thiel de Vries, J.S.M.; de Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A New Alternative to Saving Our Beaches from Sea-Level Rise: The Sand Engine. J. Coast. Res. 2013, 290, 1001–1008. [Google Scholar] [CrossRef]
- de Schipper, M.A.; Ludka, B.C.; Raubenheimer, B.; Luijendijk, A.P.; Schlacher, T.A. Beach Nourishment Has Complex Implications for the Future of Sandy Shores. Nat. Rev. Earth Environ. 2020, 2, 70–84. [Google Scholar] [CrossRef]
- Amoudry, L.O.; Souza, A.J. Deterministic Coastal Morphological and Sediment Transport Modeling: A Review and Discussion. Rev. Geophys. 2011, 49, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and Validation of a Three-Dimensional Morphological Model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Comput. Geosci. 2008, 34, 230–244. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.J.H.M.; Van Dongeren, A.; Van Thiel de Vries, J.; Lescinski, J.; McCall, R. XBeach Model Description and Manual; Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology: Delft, The Netherlands, 2010. [Google Scholar]
- Lu, Y.; Li, S.; Zuo, L.; Liu, H.; Roelvink, J.A. Advances in Sediment Transport under Combined Action of Waves and Currents. Int. J. Sediment Res. 2015, 30, 351–360. [Google Scholar] [CrossRef]
- Ranasinghe, R. On the Need for a New Generation of Coastal Change Models for the 21st Century. Sci. Rep. 2020, 10, 2010. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, L.C. General View on Sand Transport by Currents and Waves: Data Analysis and Engineering Modelling for Uniform and Graded Sand (TRANSPOR 2000 and CROSMOR 2000 Models); Deltares (WL): Delft, The Netherlands, 2000. [Google Scholar]
- Soulsby, R.L.; Damgaard, J.S. Bedload Sediment Transport in Coastal Waters. Coast. Eng. 2005, 52, 673–689. [Google Scholar] [CrossRef]
- Soulsby, R.L.; Clarke, S. Bed Shear-Stresses Under Combined Waves and Currents on Smooth and Rough Beds; HR Wallingford: Wallingford, UK, 2005; Volume 1905. [Google Scholar]
- Drake, D.E.; Cacchione, D.A.; Grant, W.D. Shear Stress and Bed Roughness Estimates for Combined Wave and Current Flows over a Rippled Bed. J. Geophys. Res. 1992, 97, 2319. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S.; Stewart, R.W. Radiation Stresses in Water Waves; a Physical Discussion, with Applications. Deep. Res. Oceanogr. Abstr. 1964, 11, 529–562. [Google Scholar] [CrossRef]
- Grant, W.D.; Madsen, O.S. Combined Wave and Current Interaction with a Rough Bottom. J. Geophys. Res. 1979, 84, 1797–1808. [Google Scholar] [CrossRef]
- Fredsøe, J.; Andersen, K.H.; Mutlu Sumer, B. Wave plus Current over a Ripple-Covered Bed. Coast. Eng. 1999, 38, 177–221. [Google Scholar] [CrossRef]
- Raushan, P.K.; Singh, S.K.; Debnath, K.; Mukherjee, M.; Mazumder, B.S. Distribution of Turbulent Energy in Combined Wave Current Flow. Ocean Eng. 2018, 167, 310–316. [Google Scholar] [CrossRef]
- Teles, M.J.; Pires-Silva, A.A.; Benoit, M. Numerical Modelling of Wave Current Interactions at a Local Scale. Ocean Model. 2013, 68, 72–87. [Google Scholar] [CrossRef]
- Wengrove, M.E.; Foster, D.L.; Lippmann, T.C.; de Schipper, M.A.; Calantoni, J. Observations of Bedform Migration and Bedload Sediment Transport in Combined Wave-Current Flows. J. Geophys. Res. Ocean. 2019, 124, 4572–4590. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.J.; Rose, C.P.; Thorne, P.D.; O’Connor, B.A.; Humphery, J.D.; Hardcastle, P.J.; Moores, S.P.; Cooke, J.A.; Wilson, D.J. Field Observations and Predictions of Bed Shear Stresses and Vertical Suspended Sediment Concentration Profiles in Wave-Current Conditions. Cont. Shelf Res. 1999, 19, 507–536. [Google Scholar] [CrossRef]
- Wolf, J.; Prandle, D. Some Observations of Wave–Current Interaction. Coast. Eng. 1999, 37, 471–485. [Google Scholar] [CrossRef]
- Fernández-Mora, A.; Calvete, D.; Falqués, A.; De Swart, H.E. Onshore Sandbar Migration in the Surf Zone: New Insights into the Wave-Induced Sediment Transport Mechanisms. Geophys. Res. Lett. 2015, 42, 2869–2877. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.R.; Mohr, M.C.; Chader, S.A. Laboratory Experiments on Beach Change Due to Nearshore Mound Placement. Coast. Eng. 2017, 121, 119–128. [Google Scholar] [CrossRef]
- Stansby, P.K.; Huang, J.; Apsley, D.D.; García-Hermosa, M.I.; Borthwick, A.G.L.; Taylor, P.H.; Soulsby, R.L. Fundamental Study for Morphodynamic Modelling: Sand Mounds in Oscillatory Flows. Coast. Eng. 2009, 56, 408–418. [Google Scholar] [CrossRef]
- Ruol, P.; Martinelli, L.; Favaretto, C.; Scroccaro, D. Innovative Sand Groin Beach Nourishment with Environmental, Defense and Recreational Purposes. In Proceedings of the The 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, 30 July 2018; International Society of Offshore and Polar Engineers: Sapporo, Japan, 2018. [Google Scholar]
- Egan, G.; Cowherd, M.; Fringer, O.; Monismith, S. Observations of Near-Bed Shear Stress in a Shallow, Wave- and Current-Driven Flow. J. Geophys. Res. Ocean. 2019, 124, 6323–6344. [Google Scholar] [CrossRef]
- Zhu, Q.; van Prooijen, B.C.; Wang, Z.B.; Ma, Y.X.; Yang, S.L. Bed Shear Stress Estimation on an Open Intertidal Flat Using in Situ Measurements. Estuar. Coast. Shelf Sci. 2016, 182, 190–201. [Google Scholar] [CrossRef]
- Kalligeris, N.; Smit, P.B.; Ludka, B.C.; Guza, R.T.; Gallien, T.W. Calibration and Assessment of Process-Based Numerical Models for Beach Profile Evolution in Southern California. Coast. Eng. 2020, 158, 103650. [Google Scholar] [CrossRef] [Green Version]
- van Duin, M.J.P.; Wiersma, N.R.; Walstra, D.J.R.; van Rijn, L.C.; Stive, M.J.F. Nourishing the Shoreface: Observations and Hindcasting of the Egmond Case, The Netherlands. Coast. Eng. 2004, 51, 813–837. [Google Scholar] [CrossRef]
- Soulsby, R.L.; Humphery, J.D. Field Observations of Wave-Current Interaction at the Sea Bed. In Water Wave Kinematics; Springer: Dordrecht, The Netherlands, 1990; pp. 413–428. [Google Scholar]
- Arnskov, M.M.; Fredsøe, J.; Sumer, B.M. Bed Shear Stress Measurements over a Smooth Bed in Three-Dimensional Wave-Current Motion. Coast. Eng. 1993, 20, 277–316. [Google Scholar] [CrossRef]
- Yuan, J. Turbulent Boundary Layers under Irregular Waves and Currents: Experiments and the Equivalent-Wave Concept. J. Geophys. Res. Ocean. 2016, 121, 2616–2640. [Google Scholar] [CrossRef]
- Moulton, M.; Elgar, S.; Raubenheimer, B. A Surfzone Morphological Diffusivity Estimated from the Evolution of Excavated Holes. Geophys. Res. Lett. 2014, 41, 4628–4636. [Google Scholar] [CrossRef] [Green Version]
- Rijnsdorp, D.P.; Smit, P.B.; Zijlema, M.; Reniers, A.J.H.M. Efficient Non-Hydrostatic Modelling of 3D Wave-Induced Currents Using a Subgrid Approach. Ocean Model. 2017, 116, 118–133. [Google Scholar] [CrossRef] [Green Version]
- De Vriend, H.J. Analysis of Horizontally Two-Dimensional Morphological Evolutions in Shallow Water. J. Geophys. Res. 1987, 92, 3877. [Google Scholar] [CrossRef]
- de Schipper, M.A.; Hopkins, J.; Wengrove, M.; Saxoni, I.; Klienhans, M.; Senechal, N.; Castelle, B.; Ribas, F.; Ruessink, B.G.; Murphy, B.; et al. MODEX: Laboratory Experiment Exploring Sediment Spreading of a Mound under Waves and Currents. In Proceedings of the Coastal Sediments, 27–31 May 2019; World Scientific Pub Co Pte Lt: Singapore, 2019; pp. 511–524. [Google Scholar]
- Hopkins, J.; de Schipper, M.A.; Wengrove, M.; De Wit, F.; Castelle, B. Observations and Numerical Model Results of Morphodynamic Feedback Owing to Wave-Current Interaction. In Proceedings of the Coastal Sediments 2019, 27–31 May 2019; World Scientific Pub Co Pte Lt: Singapore, 2019; pp. 553–564. [Google Scholar]
- Zijlema, M.; Stelling, G.; Smit, P. SWASH: An Operational Public Domain Code for Simulating Wave Fields and Rapidly Varied Flows in Coastal Waters. Coast. Eng. 2011, 58, 992–1012. [Google Scholar] [CrossRef]
- Grant, W.D.; Madsen, O.S. Movable Bed Roughness in Unsteady Oscillatory Flow. J. Geophys. Res. 1982, 87, 469. [Google Scholar] [CrossRef]
- Nielsen, P. Coastal Bottom Boudary Layers and Sediment Transport; World Scientific Publishing: Singapore, 1992. [Google Scholar]
- Van Rijn, L.C. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. J. Hydraul. Eng. 2007, 133, 649–667. [Google Scholar] [CrossRef] [Green Version]
- de Wit, F.; Tissier, M.; Reniers, A. Characterizing Wave Shape Evolution on an Ebb-Tidal Shoal. J. Mar. Sci. Eng. 2019, 7, 367. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.G.; Büyüköztürk, O. A Symmetry Measure for Damage Detection with Mode Shapes. J. Sound Vib. 2017, 408, 123–137. [Google Scholar] [CrossRef]
Test # | Wave-Current Combination | Q (L/s) | H (m) Observed | T (s) |
---|---|---|---|---|
1 | Waves only, low | 0 | 0.098 | 1.0 |
2 | Wave only, medium | 0 | 0.12 | 1.2 |
3 | Wave only, high | 0 | 0.12 | 1.3 |
4 | Currents only, high | 900 | 0.00 | 0.0 |
5 | Currents only, low | 700 | 0.00 | 0.0 |
6 | Combined, low energy | 400 | 0.055 | 0.8 |
7 | Combined, equal energy | 500 | 0.12 | 1.2 |
8 | Combined, current > wave energy | 580 | 0.098 | 1.0 |
9 | Combined, wave > current energy | 420 | 0.12 | 1.3 |
Base Test # | # of Ratios | Current-to-Wave Ratio (α) List | |
---|---|---|---|
2 | 0.066 | 10 | 0.01; 0.11; 0.26; 0.35; 0.44; 0.55; 0.68; 0.76; 0.86; 0.99 |
3 | 0.072 | 13 | 0.00; 0.05; 0.09; 0.17; 0.28; 0.36; 0.45; 0.56; 0.63; 0.70; 0.79; 0.89; 0.96 |
7 | 0.161 | 13 | 0.00; 0.02; 0.06; 0.14; 0.25; 0.30; 0.42; 0.49; 0.57; 0.66; 0.77; 0.84; 0.92 |
8 | 0.190 | 14 | 0.00; 0.04; 0.10; 0.19; 0.26; 0.34; 0.45; 0.52; 0.62; 0.69; 0.74; 0.86; 0.94; 1.00 |
9 | 0.135 | 16 | 0.02; 0.05; 0.12; 0.17; 0.24; 0.30; 0.36; 0.40; 0.48; 0.52; 0.61; 0.72; 0.78; 0.85; 0.94; 1.00 |
Property Name | |||
---|---|---|---|
Skewness | 0.23 | 0.49 | 0.26 |
Asymmetry | 0.10 | <0.01 | <0.01 |
B | 0.22 | 0.24 | 0.16 |
Ursell | 0.27 | 0.48 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hopkins, J.; de Schipper, M.; Wengrove, M.; Castelle, B. Wave-Current Impact on Shear Stress Patterns around 3D Shallow Bedforms. J. Mar. Sci. Eng. 2022, 10, 1178. https://doi.org/10.3390/jmse10091178
Hopkins J, de Schipper M, Wengrove M, Castelle B. Wave-Current Impact on Shear Stress Patterns around 3D Shallow Bedforms. Journal of Marine Science and Engineering. 2022; 10(9):1178. https://doi.org/10.3390/jmse10091178
Chicago/Turabian StyleHopkins, Julia, Matthieu de Schipper, Meagan Wengrove, and Bruno Castelle. 2022. "Wave-Current Impact on Shear Stress Patterns around 3D Shallow Bedforms" Journal of Marine Science and Engineering 10, no. 9: 1178. https://doi.org/10.3390/jmse10091178
APA StyleHopkins, J., de Schipper, M., Wengrove, M., & Castelle, B. (2022). Wave-Current Impact on Shear Stress Patterns around 3D Shallow Bedforms. Journal of Marine Science and Engineering, 10(9), 1178. https://doi.org/10.3390/jmse10091178