Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microplastics Sampling
2.2. Contamination Control
2.3. Microplastics Identification
3. Results
3.1. Surface Samples
3.2. Subsurface Samples
4. Discussion
4.1. Visual vs. FT-IR Analysis
4.2. Characteristics of MPs Particles
4.3. Role of Hydrophysics in the Spatial Distribution of MPs
- distribution is sporadic (found at 25–57% of stations);
- items with positive buoyancy, mainly (usually three types: PE, PP, EPS);
- lower abundance but higher weight concentration (in comparison with the same size fraction for subsurface).
- more uniform distribution (up to 90% of stations);
- items with both negative and positive buoyancy (up to 18 different types);
- smaller and lighter particles, even in the same size range.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crawford, C.B.; Quinn, B. Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Tiseo, I. Global Plastic Production 1950–2020. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 17 October 2022).
- Sicotte, D.M. From cheap ethane to a plastic planet: Regulating an industrial global production network. Energy Res. Soc. Sci. 2020, 66, 101479. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auta, H.S.; Emenike, C.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment—A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y.; Wang, H.; Lu, Z.; Brookes, P.C.; Tang, C.; et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate–A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2175–2222. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GESAMP. Guidelines for the Monitoring; Assessment of Plastic Litter in the Ocean; GESAMP: London, UK, 2019. [Google Scholar]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rothstein, S.I. Plastic Particle Pollution of the Surface of the Atlantic Ocean: Evidence from a Seabird. Condor 1973, 75, 344–345. [Google Scholar] [CrossRef] [Green Version]
- Enders, K.; Lenz, R.; Stedmon, C.; Nielsen, T.G. Abundance, size and polymer composition of marine microplastics ≥ 10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 2015, 100, 70–81. [Google Scholar] [CrossRef]
- Sjollema, S.B.; Redondo-Hasselerharm, P.; Leslie, H.; Kraak, M.; Vethaak, A.D. Do plastic particles affect microalgal photosynthesis and growth? Aquat. Toxicol. 2016, 170, 259–261. [Google Scholar] [CrossRef]
- Lehtiniemi, M.; Hartikainen, S.; Näkki, P.; Engström-Öst, J.; Koistinen, A.; Setälä, O. Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs 2018, 17, e00097. [Google Scholar] [CrossRef]
- Setälä, O.; Magnusson, K.; Lehtiniemi, M.; Norén, F. Distribution and abundance of surface water microlitter in the Baltic Sea: A comparison of two sampling methods. Mar. Pollut. Bull. 2016, 110, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; He, H.; Liu, M.; Li, S.; Tang, G.; Wang, W.; Huang, P.; Wei, G.; Lin, Y.; Chen, B.; et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 2018, 633, 1206–1216. [Google Scholar] [CrossRef]
- Yakushev, E.; Gebruk, A.; Osadchiev, A.; Pakhomova, S.; Lusher, A.; Berezina, A.; van Bavel, B.; Vorozheikina, E.; Chernykh, D.; Kolbasova, G.; et al. Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Commun. Earth Environ. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Nor, N.M.; Hermsen, E.; Kooi, M.; Mintenig, S.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Farmen, E.; Provencher, J.; Aliani, S.; Baak, J.; Bergmann, M.; Booth, A.M.; Bourdages, M.P.T.; Buhl-Mortensen, L.; Feld, L.; Gabrielsen, G.W.; et al. AMAP Litter and Microplastics Monitoring Guidelines; Arctic Monitoring and Assessment Programme: Tromsø, Norway, 2021; p. 257. [Google Scholar]
- Silvestrova, K.; Stepanova, N. The distribution of microplastics in the surface layer of the Atlantic Ocean from the subtropics to the equator according to visual analysis. Mar. Pollut. Bull. 2021, 162, 111836. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, I.; Lokhov, A.; Belesov, A.; Kozhevnikov, A.; Pakhomova, S.; Berezina, A.; Frolova, N.; Kotova, E.; Leshchev, A.; Wang, X.; et al. Assessment of seasonal variability of input of microplastics from the Northern Dvina River to the Arctic Ocean. Mar. Pollut. Bull. 2022, 175, 113370. [Google Scholar] [CrossRef]
- Pakhomova, S.; Berezina, A.; Lusher, A.L.; Zhdanov, I.; Silvestrova, K.; Zavialov, P.; van Bavel, B.; Yakushev, E. Microplastic variability in subsurface water from the Arctic to Antarctica. Environ. Pollut. 2022, 298, 118808. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-De-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [Green Version]
- Glukhovets, D.I.; Salyuk, P.; Artemiev, V.; Shtraikhert, E.; Zakharkov, S.P. Variability of Bio-Optical Characteristics of Surface Water Layer during Transatlantic Transect in 2019–2020. Oceanology 2021, 61, 872–880. [Google Scholar] [CrossRef]
- Vega-Moreno, D.; Abaroa-Pérez, B.; Rein-Loring, P.; Presas-Navarro, C.; Fraile-Nuez, E.; Machín, F. Distribution and transport of microplastics in the upper 1150 m of the water column at the Eastern North Atlantic Subtropical Gyre, Canary Islands, Spain. Sci. Total Environ. 2021, 788, 147802. [Google Scholar] [CrossRef] [PubMed]
Sample Type, Size, mm | Abundance, Average (Min–Max), Items/m3 | Weight Concentration, Average (Min–Max), µm/m3 | N of Stations, MPs Found/Total | Average Item Size, mm | N of Polymer Types |
---|---|---|---|---|---|
Surf, 1–5 | 0.026 (0–0.073) | 154.3 (0–503) | 4/7 | 2.8 × 2.1 | 2 |
Subsurf, 1–5 | 0.17 (0–0.88) | 4.3 (0–17.5) | 9/17 | 2.8 × 0.3 | 7 |
Subsurf, 0.3–1 | 0.44 (0–0.88) | 1.9 (0–8.8) | 12/17 | 0.55 × 0.2 | 9 |
Subsurf, 0.1–0.3 | 0.12 (0–0.45) | 0.06 (0–0.67) | 4/17 | 0.25 × 0.1 | 6 |
Subsurf, 0.1–5 | 0.78 (0–2.4) | 7.0 (0–26) | 15/17 | 1.1 × 0.2 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhdanov, I.; Pakhomova, S.; Berezina, A.; Silvestrova, K.; Stepanova, N.; Yakushev, E. Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic. J. Mar. Sci. Eng. 2023, 11, 210. https://doi.org/10.3390/jmse11010210
Zhdanov I, Pakhomova S, Berezina A, Silvestrova K, Stepanova N, Yakushev E. Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic. Journal of Marine Science and Engineering. 2023; 11(1):210. https://doi.org/10.3390/jmse11010210
Chicago/Turabian StyleZhdanov, Igor, Svetlana Pakhomova, Anfisa Berezina, Ksenia Silvestrova, Natalia Stepanova, and Evgeniy Yakushev. 2023. "Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic" Journal of Marine Science and Engineering 11, no. 1: 210. https://doi.org/10.3390/jmse11010210
APA StyleZhdanov, I., Pakhomova, S., Berezina, A., Silvestrova, K., Stepanova, N., & Yakushev, E. (2023). Differences in the Fate of Surface and Subsurface Microplastics: A Case Study in the Central Atlantic. Journal of Marine Science and Engineering, 11(1), 210. https://doi.org/10.3390/jmse11010210