Offshore Wind Farms in South Korea: A Potential Site for Scallop Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Scallops
2.2. Deployment of the Scallop Lantern Cages in the Longline Aquaculture Facility
2.3. Sampling and Measurement
2.4. Temperature Variation of the Study Site
2.5. Statistical Analysis
3. Results and Discussion
- Lf = final average shell length;
- Wf = wet weight at the end of the experiment;
- Li = initial average shell length;
- Wi = wet weight at the beginning of the experiment;
- ln = natural logarithm;
- t = number of days of the experimental time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyong, N.H.; Yoon, J.E.; Jang, M.S.; Jang, D.S. An assessment of offshore wind energy resources around Korean Peninsula. J. Korean Sol Energy Soc. 2003, 23, 35–41. [Google Scholar]
- Park, J.; Kim, B. An analysis of South Korea’s energy transition policy with regards to offshore wind power development. Renew. Sustain. Energy Rev. 2019, 109, 71–84. [Google Scholar] [CrossRef]
- Hevia-Koch, P.; Klinge Jacobsen, H.K. Comparing offshore and onshore wind development considering acceptance costs. Energy Policy 2019, 125, 9–19. [Google Scholar] [CrossRef]
- Chen, J.; Kim, M.-H. Review of recent offshore wind turbine research and optimization methodologies in their design. J. Mar. Sci. Eng. 2022, 10, 28. [Google Scholar] [CrossRef]
- Olczak, P.; Surma, T. Energy productivity potential of offshore wind in Poland and cooperation with onshore Wind Farm. Appl. Sci. 2023, 13, 4258. [Google Scholar] [CrossRef]
- Rehfeldt, K.; Paschedag, U.; Bömer, J. (Eds.) Offshore Wind Power Deployment in Germany; Federal Ministry for the Environment; Nature Conservation and Nuclear Safety (BMU); Offshore Wind Energy Foundation: Bonn, Germany, 2007; p. 31. [Google Scholar]
- Chaji, M.; Werner, S. Economic impacts of offshore wind farms on fishing industries: Perspectives, methods, and knowledge gaps. Mar. Coast. Fish. 2023, 15, e10237. [Google Scholar] [CrossRef]
- Buck, B.H.; Krause, G.; Michler-Cieluch, T.; Brenner, M.; Buchholz, C.M.; Busch, J.A.; Fisch, R.; Geisen, M.; Zielinski, O. Meeting the quest for spatial efficiency: Progress and prospects of extensive aquaculture within offshore wind farms. Helgol. Mar. Res. 2008, 62, 269–281. [Google Scholar] [CrossRef]
- Huang, C.T.; Afero, F.; Hung, C.W.; Chen, B.Y.; Nan, F.H.; Chiang, W.S.; Tang, H.J.; Kang, C.K. Economic feasibility assessment of cage aquaculture in offshore wind power generation areas in Changhua County, Taiwan. Aquaculture 2022, 548, 737611. [Google Scholar] [CrossRef]
- Kang, K.-S.; Jeon, I.-S.; Kwak, J.-Y. Possibilities and orientation toward co-existence of offshore wind farms. J. Wind Energy 2016, 7, 5–13. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, H.W.; Kim, J.H. An economical feasibility analysis of sea farm project using co-location in offshore wind farms. Product. Res. 2015, 33, 73–80. [Google Scholar] [CrossRef]
- Lindeboom, H.J.; Kouwenhoven, H.J.; Bergman, M.J.N.; Bouma, S.; Brasseur, S.; Daan, R.; Fijn, R.C.; De Haan, D.; Dirksen, S.; Van Hal, R.; et al. Short term ecological effects of an offshore wind farm in the Dutch coastal zone; a compliation. Environ. Res. Lett. 2011, 6, 03510. [Google Scholar] [CrossRef]
- Reubens, J.T.; Degraer, S.; Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: A synthesis of 4 years of research. Hydrobiologia 2014, 727, 121–136. [Google Scholar] [CrossRef]
- Stenberg, C.; Støttrup, J.G.; Van Deurs, M.; Berg, C.W.; Dinesen, G.E.; Mosegaard, H.; Grome, T.M.; Leonhard, S.B. Long-term effects of an offshore wind farm in the North Sea on fish communities. Mar. Ecol. Prog. Ser. 2015, 528, 257–265. [Google Scholar] [CrossRef]
- Li, C.; Coolen, J.W.P.; Scherer, L.; Mogollón, J.M.; Braeckman, U.; Vanaverbeke, J.; Tukker, A.; Steubing, B. Offshore Wind Energy and Marine Biodiversity in the North Sea: Life Cycle Impact Assessment for Benthic Communities. Environ. Sci. Technol. 2023, 57, 6455–6464. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, H.; Zhang, T.; Liu, S.; Zhang, S.; Liu, Q.; Xiang, J.; Zhang, F. Influence of filtering and biodeposition by the cultured scallop Chlamys farreri on benthic-pelagic coupling in a eutrophic bay in China. Mar. Ecol. Prog. Ser. 2006, 317, 127–141. [Google Scholar] [CrossRef]
- Park, G.J.; Yoon, S.P.; Park, Y.J.; Song, H.I. Effect of stocking density on growth and survival rate of the scallop, Chlamys farreri (Jones & Preston, 1904) cultured in hanging culture in the west coast of Korea. Korean J. Malacol. 2012, 28, 1–6. [Google Scholar] [CrossRef]
- Yoon, J.M. Genetic distances of scallop (Chlamys farreri) populations investigated by PCR procedure. Dev. Reprod. 2017, 21, 435–440. [Google Scholar] [CrossRef]
- Fay, C.W.; Neves, R.J.; Pardue, G.B. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic): Bay scallop. In Virginia Polytechnic Institute and State University Blacksburg Department of Fisheries and Wildlife Science, FWS/OBS-82/11.12; EL-82-4; U.S. Army Corps of Engineers: Washington, DC, USA, 1983; p. 17. [Google Scholar]
- NIFS (National Institute of Fisheries Science). Technical Manual for the Scallops Aquaculture; NIFS (National Institute of Fisheries Science): Busan, Republic of Korea, 2019; pp. 18–23. [Google Scholar]
- FAO. Sustainability in action (Rome). In The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Coleman, S.; Cleaver, C.; Morse, D.; Brady, D.C.; Kiffney, T. The coupled effects of stocking density and temperature on Sea Scallop (Placopecten magellanicus) growth in suspended culture. Aquacult. Rep. 2021, 20, 100684. [Google Scholar] [CrossRef]
- Coleman, S.; Morse, D.; Christian Brayden, W.; Brady, D.C. Developing a bioeconomic framework for scallop culture optimization and product development. Aquac. Econ. Manag. 2021, 27, 25–49. [Google Scholar] [CrossRef]
- Coleman, S.; Kiffney, T.; Tanaka, K.R.; Morse, D.; Brady, D.C. Meta-analysis of growth and mortality rates of net cultured sea scallops across the northwest Atlantic. Aquaculture 2022, 546, 737392. [Google Scholar] [CrossRef]
- Cano, J.; Campos, M.J.; Román, G. Growth and mortality of the king scallop grown in suspended culture in Malaga, Southern Spain. Aquacult. Int. 2000, 8, 207–225. [Google Scholar] [CrossRef]
- Yiğitkurt, S. Growth and survival performance of smooth scallop (Flexopecten glaber Linnaeus, 1758) at different depths in the Aegean Sea. Mar. Sci. Technol. Bull. 2021, 10, 278–285. [Google Scholar] [CrossRef]
- Claereboudt, M.R.; Burreau, D.; Coté, J.; Himmelman, J.H. Fouling development and its effect on the growth of juveniles giant scallop (Placopecten magallanicus) in suspended culture. Aquaculture 1994, 121, 324–342. [Google Scholar] [CrossRef]
- Sun, J.; Lin, C.; Li, P.; Jin, Y.; Zhou, L. The culture experiment of Scallop of Chlamys farreri in Nanji Islands. J. Zhejiang Coll. Fish. 1997, 16, 247–255. [Google Scholar]
- Prato, E.; Biandolino, F.; Parlapiano, I.; Papa, L.; Denti, G.; Fanelli, G. Estimation of growth of parameters of the Black Scallop Mimachlamys Varia in the Gulf of Taranto (Ionian Sea, Southern Italy). Water 2020, 12, 3342. [Google Scholar] [CrossRef]
- Mills, D. Combined effects of temperature and algal concentration on survival, growth and feeding physiology of Pinctata maxima (Jameson) spat. J. Shellfish Res. 2000, 19, 159–166. [Google Scholar]
- Nan, X.; Wei, H.; Zhang, H.; Nie, H. Factors influencing the interannual variation in biomass of bottom-cultured Yesso scallop (Patinopecten yessoensis) in the Changhai Sea Area, China. Front. Mar. Sci. 2022, 8, 798359. [Google Scholar] [CrossRef]
- Heasman, M.P.; O’Connor, W.A.; Frazer, A.W.J. Ontogenetic changes in optimal rearing temperatures for the commercial scallop, Pecten fumatus Reeve. J. Shellfish Res. 1996, 15, 627–634. [Google Scholar]
- Xiao, J.; Ford, S.E.; Yang, H.S.; Zhang, G.F.; Zhang, F.S.; Guo, X.M. Studies on mass summer mortality of cultured Zhikong scallops (Chlamys farreri Jones et Preston) in China. Aquaculture 2005, 250, 602–615. [Google Scholar] [CrossRef]
- Han, J.C.; Jo, Q.; Park, Y.C.; Park, T.G.; Lee, D.C.; Cho, K.C. A report on the mass summer mortalities of the farmed Pacific oysters, Crassostrea gigas and Bay scallops Argopecten irradians in the local waters of Goseong Bay, Korea. Korean J. Malacol. 2013, 29, 239–244. [Google Scholar] [CrossRef]
Chalamys farreri | ||||||
Offshore Wind Farm | Tongyeong Megacosm Test Station | |||||
Month | Total Individuals | # of Dead | Mortality (%) | Total Individuals | # of Dead | Mortality (%) |
12 | 33 | 0 | 0 | 33 | 0 | 0 |
2 | 35 | 0 | 0 | 35 | 0 | 0 |
3 | 35 | 0 | 0 | 41 | 3 | 7.32 |
4 | 32 | 0 | 0 | 37 | 1 | 2.7 |
5 | 40 | 1 | 2.5 | 42 | 13 | 30.95 |
6 | 40 | 1 | 2.5 | 35 | 10 | 28.57 |
7 | 35 | 0 | 0 | 35 | 11 | 31.43 |
8 | 40 | 0 | 0 | 48 | 17 | 35.42 |
Cumulative | 290 | 2 | 0.69 | 306 | 55 | 17.97 |
Argopecten irradians | ||||||
Offshore Wind Farm | Tongyeong Megacosm Test Station | |||||
Month | Total individuals | # of dead | Mortality (%) | Total individuals | # of dead | Mortality (%) |
9 | 28 | 0 | 28 | 0 | 0 | |
10 | 59 | 23 | 38.98 | 32 | 1 | 3.13 |
11 | 40 | 11 | 27.5 | 30 | 1 | 3.33 |
Cumulative | 127 | 34 | 26.77 | 90 | 2 | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-W.; Oh, S.-Y.; Park, J.J.C.; Jung, Y.-H.; Kim, H.-J.; Choi, D.M.; Choi, Y.-U.; Han, J. Offshore Wind Farms in South Korea: A Potential Site for Scallop Culture. J. Mar. Sci. Eng. 2023, 11, 1988. https://doi.org/10.3390/jmse11101988
Lee D-W, Oh S-Y, Park JJC, Jung Y-H, Kim H-J, Choi DM, Choi Y-U, Han J. Offshore Wind Farms in South Korea: A Potential Site for Scallop Culture. Journal of Marine Science and Engineering. 2023; 11(10):1988. https://doi.org/10.3390/jmse11101988
Chicago/Turabian StyleLee, Dae-Won, Sung-Yong Oh, Jordan Jun Chul Park, Yun-Hwan Jung, Han-Jun Kim, Dong Mun Choi, Young-Ung Choi, and Jeonghoon Han. 2023. "Offshore Wind Farms in South Korea: A Potential Site for Scallop Culture" Journal of Marine Science and Engineering 11, no. 10: 1988. https://doi.org/10.3390/jmse11101988
APA StyleLee, D. -W., Oh, S. -Y., Park, J. J. C., Jung, Y. -H., Kim, H. -J., Choi, D. M., Choi, Y. -U., & Han, J. (2023). Offshore Wind Farms in South Korea: A Potential Site for Scallop Culture. Journal of Marine Science and Engineering, 11(10), 1988. https://doi.org/10.3390/jmse11101988