Maneuverability Performance of a KRISO Container Ship (KCS) with a Bulb-Type Wavy Twisted Rudder and Asymmetric Pre-Swirl Stator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principal Dimensions of the Target Ship, Propeller, Stator, and Rudder
2.2. Model Test
2.3. Model Test Result
2.4. Maneuvering Simulation
2.4.1. Coordinate System
2.4.2. Motion Equations
2.4.3. Rudder Forces on Rotating Propeller
2.4.4. Validation of the Maneuvering Simulation
3. Maneuvering Simulation Results
3.1. Turning Circle Test
3.2. Zigzag Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos, M.A.; Utne, I.B.; Mosleh, A. Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events. Saf. Sci. 2019, 116, 33–44. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Jiang, L.; An, L.; Yang, R. Collision-avoidance navigation systems for Maritime Autonomous Surface Ships: A state of the art survey. Ocean Eng. 2021, 235, 109380. [Google Scholar] [CrossRef]
- Olson, C.R. Effects of various linkage ratios on the free-stream hydrodynamic characteristics of an all-movable flapped rudder. In David W. Taylor Model Basin; Report 991, NS 715-102; Navy Department: Washington, DC, USA, 1995. [Google Scholar]
- Trieu Van, N.; Yoshiho, I. Development of fishtail rudder sections with higher maximum lift coefficients. In Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference, Busan, Republic of Korea, 15 June 2014. [Google Scholar]
- Kim, Y.G.; Kim, S.Y.; Ha, B.I.; Kim, H.S.; Lim, C.S. Prediction of Maneuverability of a Ship with Flap Rudder. J. Soc. Nav. Arch. Korea 2006, 43, 171–176. [Google Scholar]
- Shen, Y.T.; Jiang, C.W.; Remmers, K.D. Twisted rudder for reduced cavitation. J. Ship Res. 1997, 41, 260–272. [Google Scholar] [CrossRef]
- Yoon, H.S.; Hung, P.A.; Jung, J.H.; Kim, M.C. Effect of the wave leading edge on hydrodynamic characteristics for flow around low aspect ratio wing. Comput. Fluids 2011, 49, 276–289. [Google Scholar] [CrossRef]
- Kim, M.G. Optimal Design and Performance Study of Biomimetic Twisted Rudder. Master’s Thesis, Pusan National University, Busan, Republic of Korea, 2019. [Google Scholar]
- Shin, Y.J. A Study on the Analysis of Interactions and Optimal Design of Energy Saving Device by Ship Types. Ph.D. Thesis, Pusan National University, Busan, Republic of Korea, 2019. [Google Scholar]
- Ekanem Attah, E.; Bucknall, R. An analysis of the energy efficiency of LNG ships powering options using the EEDI. Ocean Eng. 2015, 110, 62–74. [Google Scholar] [CrossRef]
- Ancic, I.; Sestan, A. Influence of the required EEDI reduction factor on the CO2 emission from bulk carrier. Energy Policy 2015, 84, 107–116. [Google Scholar] [CrossRef]
- Vladimir, N.; Ancic, I.; Sestan, A. Effect of ship size on EEDI requirements for large container ships. J. Mar. Sci. Technol. 2018, 23, 42–51. [Google Scholar] [CrossRef]
- Ivanova, G. Analysis of the specifics in calculating the index of existing marine energy efficiency EEXI in force since 2023. In Proceedings of the 13th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 8–11 September 2021. [Google Scholar]
- Perera, L.P.; Ventikos, N.P.; Rolfsen, S.; Anders, O. Advanced data analytics towards energy efficient and emission reduction retrofit technology integration in shipping. In Proceedings of the 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, 20 June 2021. [Google Scholar]
- Wang, S.; Psaraftis, H.N.; Qi, J. Paradox of international maritime organization’s carbon intensity indicator. Commun. Transp. Res. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Takekuma, K.; Tsuda, S.; Kawamura, A.; Kawaguchi, N. Development of reaction fin as a device for improvement of the propulsive performance of high block coefficient ships. J. Soc. Nav. Arch. Jpn. 1981, 1981, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.D.; Kim, M.C.; Chun, H.H. A study on the design of a biased asymmetric pre-swirl stator propulsion system. J. Soc. Nav. Arch. Korea 2004, 41, 13–21. [Google Scholar]
- Jin, W.S.; Kim, M.C.; Kang, J.G.; Shin, Y.J.; Lee, K.W. Optimization of Blade Position on an Asymmetric Pre-swirl Stator used in Container Ships. J. Mar. Sci. Eng. 2023, 11, 50. [Google Scholar] [CrossRef]
- Su, Y.M.; Lin, J.F.; Zhao, D.G.; Guo, C.Y.; Guo, H. Influence of a pre-swirl stator and rudder bulb system on the propulsion performance of a large-scale ship model. Ocean Eng. 2020, 218, 108189. [Google Scholar] [CrossRef]
- Koushan, K.; Krasilnikov, V.; Nataletti, M.; Sileo, L.; Spence, S. Experimental and Numerical Study of Pre-Swirl Stators PSS. J. Mar. Sci. Eng. 2020, 8, 47. [Google Scholar] [CrossRef]
- Mewis, F.; Guiard, T. Mewis Duct®-New Developments, Solutions, and Conclusions. In Proceedings of the Second International Symposium on Marine Propulsors, Hamburg, Germany, 15–17 June 2011. [Google Scholar]
- Kim, S.H.; Yang, H.J.; Choi, S.H.; Lee, D.Y. Investigation on the maneuverability of pre-swirl stator. In Proceedings of the 2018 Spring KTTC Workshop, Busan, Republic of Korea, 13 April 2018. [Google Scholar]
- Kim, K.B. A Study on Course Stability of Low-Speed Full Crude Oil Tanker. Ph.D. Thesis, Chungnam National University, Daejeon, Republic of Korea, 1 February 2019. [Google Scholar]
- Yim, J.B. Effect of turning characteristics of maritime autonomous surface ship on collision avoidance. J. Navig. Port Res. 2021, 45, 298–305. [Google Scholar]
- Kim, S.H.; Kim, H.J.; Jun, H.C.; Yoon, S.B.; Park, H.P.; Gim, O.S. A Study on the Effects of High-lift Rudder on Ship’s Maneuverability. Korean Soc. Mar. Environ. Saf. 2010, 16, 393–399. [Google Scholar]
- Yaukawa, H.; Yoshimura, Y. Introduction of MMG standard method for ship maneuvering prediction. J. Mar. Sci. Technol. 2015, 20, 37–52. [Google Scholar] [CrossRef]
- Sung, Y.J.; Park, S.H. Prediction of Ship Maneuvering Performance Based on Virtual Captive Model Tests. J. Soc. Nav. Arch. Korea 2015, 52, 407–417. [Google Scholar] [CrossRef]
Full Scale | Model Scale | |
---|---|---|
Scale Ratio | 39.5 | |
Length PP [m] | 230.00 | 5.82 |
Length WL [m] | 232.5 | 5.88 |
Breadth [m] | 32.26 | 0.81 |
Depth [m] | 19.00 | 0.48 |
Design Draught [m] | 10.80 | 0.27 |
Design Speed | 19.0 knots | 1.56 m/s |
Propeller Diameter [m] | 7.90 | 0.22 |
Number of Blades | 5 | |
Pitch Ratio (0.7R) | 0.997 | |
Hub Ratio | 0.18 |
Blade No. | Position (deg) | Pitch Angle (deg) |
---|---|---|
1st | 45 | 5 |
2nd | 90 | 10 |
3rd | 135 | 2 |
4th | 270 | 1.5 |
Full-Spade Rudder | Bulb-Type Wavy Twisted Rudder | |
---|---|---|
Top Chord (m) | 151.90 | 154.59 |
Bottom Chord (m) | 126.58 | 122.43 |
Span (m) | 250.63 | 251.71 |
Rudder Type | APSS (Attached or Not) | (Knots) | (m/s) | Self-Propulsion Point (RPM) | Rudder Angle (Deg) |
---|---|---|---|---|---|
FSR | w/o APSS | 24.0 | 1.964 | 659 | 40, 35, 30, 20, 10, , 0, 5, 10, 20, 30, 35, 40 |
w/ APSS | 637 | ||||
WTR_Bulb | w/o APSS | 656 | |||
w/ APSS | 635 |
Coefficient | Value | Coefficient | Value | Coefficient | Value |
---|---|---|---|---|---|
0.2591 | 0.1753 | 0.4444 | |||
1.7212 | 0.0228 | 0.5461 | |||
0.1421 | 0.0462 | 0.7339 | |||
0.2666 | 0.0313 | 0.0570 | |||
0.3702 | 0.3099 |
Coefficient | Value | Coefficient | Value |
---|---|---|---|
) | 0.6715 | 0.3409 | |
) | 1.2299 | 0.5218 | |
) | 0.6168 | 0.3151 | |
1.4391 | 2.7244 |
Case | Type | Advance (L) | Tactical (L) | ||||
---|---|---|---|---|---|---|---|
Port Turn | Starboard Turn | Diff. (%) | Port Turn | Starboard Turn | Diff. (%) | ||
1 | FSR | 2.83 | 2.95 | 4.24 | 2.94 | 3.10 | 5.44 |
2 | FSRAPSS | 2.78 | 2.91 | 4.68 | 2.88 | 3.05 | 5.90 |
3 | WTR_Bulb | 2.73 | 2.76 | 1.10 | 2.82 | 2.84 | 1.43 |
4 | WTR_BulbAPSS | 2.69 | 2.71 | 0.74 | 2.74 | 2.77 | 1.09 |
Case | Type | Average Turning Circle * | Improvement (%) |
---|---|---|---|
1 | FSR | 2.96 | reference |
2 | FSRAPSS | 2.91 | 1.7 |
3 | WTR_Bulb | 2.79 | 5.7 |
4 | WTR_BulbAPSS | 2.73 | 7.7 |
Case | Type | 10/10 Zig-Zag | 20/20 Zig-Zag | ||||
---|---|---|---|---|---|---|---|
1st O.S.A * | 2nd O.S.A | Diff. (%) | 1st O.S.A | 2nd O.S.A | Diff. (%) | ||
1 | FSR | 10.84 | 12.58 | 16.05 | 17.78 | 19.47 | 9.51 |
2 | FSRAPSS | 10.64 | 12.34 | 15.98 | 17.40 | 18.98 | 9.08 |
3 | WTR_Bulb | 8.87 | 10.05 | 13.30 | 15.51 | 16.27 | 4.90 |
4 | WTR_BulbAPSS | 8.08 | 8.39 | 4.61 | 15.26 | 15.76 | 3.28 |
Case | Type | Average Overshoot Angle * | Improvement (%) |
---|---|---|---|
1 | FSR | 11.71 | reference |
2 | APSS | 11.49 | 1.9 |
3 | WTR_Bulb | 9.46 | 19.2 |
4 | APSS | 8.24 | 29.7 |
Case | Type | Average Overshoot Angle * | Improvement (%) |
---|---|---|---|
1 | FSR | 18.63 | reference |
2 | APSS | 18.19 | 2.3 |
3 | WTR_Bulb | 15.89 | 14.7 |
4 | APSS | 15.51 | 16.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.-J.; Kim, M.C.; Lee, K.-W.; Jin, W.S.; Kim, J.W. Maneuverability Performance of a KRISO Container Ship (KCS) with a Bulb-Type Wavy Twisted Rudder and Asymmetric Pre-Swirl Stator. J. Mar. Sci. Eng. 2023, 11, 2011. https://doi.org/10.3390/jmse11102011
Shin Y-J, Kim MC, Lee K-W, Jin WS, Kim JW. Maneuverability Performance of a KRISO Container Ship (KCS) with a Bulb-Type Wavy Twisted Rudder and Asymmetric Pre-Swirl Stator. Journal of Marine Science and Engineering. 2023; 11(10):2011. https://doi.org/10.3390/jmse11102011
Chicago/Turabian StyleShin, Yong-Jin, Moon Chan Kim, Kyuong-Wan Lee, Woo Seok Jin, and Jin Wook Kim. 2023. "Maneuverability Performance of a KRISO Container Ship (KCS) with a Bulb-Type Wavy Twisted Rudder and Asymmetric Pre-Swirl Stator" Journal of Marine Science and Engineering 11, no. 10: 2011. https://doi.org/10.3390/jmse11102011
APA StyleShin, Y. -J., Kim, M. C., Lee, K. -W., Jin, W. S., & Kim, J. W. (2023). Maneuverability Performance of a KRISO Container Ship (KCS) with a Bulb-Type Wavy Twisted Rudder and Asymmetric Pre-Swirl Stator. Journal of Marine Science and Engineering, 11(10), 2011. https://doi.org/10.3390/jmse11102011