Development and Application of an Integrated System for the Detection and Prediction of Harmful Algal Blooms in Korea
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. System Framework
2.2.1. System Architecture
- (1)
- Real-time HAB detection systems: ocean weather (AWS), acoustic (RASS), ocean environment (water temperature, salinity, and chlorophyll-a, RASS & WTSS), satellite imagery (Geostationary Ocean Color Imager, GOCI), sampling, genetic analysis, and optical data;
- (2)
- Prediction systems based on the HAB model: KOOS, HAB occurrence, and HAB movement and diffusion models;
- (3)
- Additional data: HAB information of sampling data from NIFS and HAB information of GPS data from our developed application;
- (4)
- Integrated information system: data storage server, file transfer protocol (FTP) server, and visualization system.
2.2.2. Real-Time Detection System
2.2.3. Prediction System
2.2.4. Additional Data
2.2.5. Integrated Information System
2.2.6. Field Application of Integrated HAB Detection and Prediction System
3. Results and Discussion
3.1. Real-Time HAB Detection System
3.1.1. RRL Validation from C. polykrikoides Population
3.1.2. Operation of Detection System
3.2. HAB Prediction System
3.2.1. Operation of KOOS Model
3.2.2. Evaluation of Prediction Model
3.2.3. Evaluation of Movement and Diffusion Model
3.3. Operation of Integrated Data Management and Visualization System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabalais, N.N.; Turner, R.E.; Diaz, R.J.; Justic, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- Kim, H.G.; Jung, C.S.; Lim, W.A.; Lee, C.K.; Kim, S.Y.; Youn, S.H.; Cho, Y.C.; Lee, S.G. The spatio-temporal progress of Cochlodinium polykrikoides blooms in the coastal waters of Korea. Kor. Soc. Fish. Aquat. Sci. 2001, 34, 691–696. (In Korean) [Google Scholar]
- Jeong, H.J.; Kim, S.K.; Kim, J.S.; Kim, S.T.; You, Y.D.; Yoon, J.Y. Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide and toxic dinoflagellates. J. Euk. Microb. 2001, 48, 298–308. [Google Scholar] [CrossRef]
- Seo, P.S.; Lee, S.J.; Kim, Y.; Lee, J.H.; Kim, H.G.; Lee, J.D. Axenic culture production and growth of a Dinoflagellate, Cochlodinium polykrikoides. J. Korean Fish. Soc. 1998, 31, 71–76. (In Korean) [Google Scholar]
- NIFS. Standard of harmful algal blooms forecast in Korea. National Institute of Fisheries Science (NIFS). 2023. Available online: https://www.nifs.go.kr/red/main.red (accessed on 1 July 2023).
- Kudela, R.M.; Gobler, C.J. Harmful dinoflagellate blooms caused by Cochlodinium sp. Global expansion and ecological strategies facilitating bloom formation. Harmful Algae 2011, 4, 71–86. [Google Scholar] [CrossRef]
- Lauria, M.L.; Purdie, D.A.; Sharples, J. Contrasting phytoplankton distributions controlled by tidal turbulence in an estuary. J. Mar. Syst. 1999, 21, 189–197. [Google Scholar] [CrossRef]
- Park, G.H.; Lee, K.; Koo, C.M.; Lee, H.W.; Lee, C.K.; Koo, J.S.; Lee, T.; Ahn, S.H.; Kim, H.G.; Park, B.K. A sulfur hexafluoride-based Lagrangian study on initiation and accumulation of the red tide Cochlodinium polykrikoides in southern coastal waters of Korea. Limnol. Oceanogr. 2005, 50, 578–586. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Culver, M.E.; Tester, P.A.; Tomlinson, M.; Kirkpatrick, G.J.; Pederson, B.A.; Truby, E.; Ransibrahmanakul, V.; Soracco, M. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2003, 2, 147–160. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Shanmugam, P.; Chang, K.I.; Moon, J.E.; Ryu, J.H. Spatial and temporal aspects of phytoplankton blooms in complex ecosystems off the Korean coast from satellite ocean color observations. Ocean Sci. J. 2005, 40, 67–78. [Google Scholar] [CrossRef]
- Anglès, S.; Jordi, A.; Garcès, E.; Masó, M.; Basterretxea, G. High-resolution spatio-temporal distribution of a coastal phytoplankton bloom using laser in situ scattering and transmissometry (LISST). Harmful Algae 2008, 7, 808–816. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Minnetta, P.J.; Fleming, L.E.; Banzona, V.F.; Baringera, W. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis). Harmful Algae 2010, 9, 440–448. [Google Scholar] [CrossRef]
- Gregg, W.W.; Casey, N.W. Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sens. Environ. 2004, 93, 463–479. [Google Scholar] [CrossRef]
- Vilas, L.G.; Spyrakos, E.; Palenzuela, J.M.T. Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician rias (NW Spain). Remote Sens. Environ. 2011, 115, 524–535. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Park, M.-S.; Lee, S.; Ahn, J.-H.; Lee, S.-J.; Choi, J.-K.; Ryu, J.-H. Decadal Measurements of the First Geostationary Ocean Color Satellite (GOCI) Compared with MODIS and VIIRS Data. Remote Sens. 2022, 14, 72. [Google Scholar] [CrossRef]
- Doucette, G.J.; Mikulski, C.M.; Jones, K.L.; King, K.L.; Greenfield, D.I.; Marin, R., III; Jensen, S.; Roman, B.; Elliott, C.T.; Scholin, C.A. Remote, subsurface detection of the algal toxin domoic acid onboard the Environmental Sample Processor: Assay development and field trials. Harmful Algae 2009, 8, 880–888. [Google Scholar] [CrossRef]
- Greenfield, D.I.; Marin, R., III; Jensen, S.; Massion, E.; Roman, B.; Feldman, J.; Scholin, C.A. Application of environmental sample processor (ESP) methodology for quantifying Pseudo-nitzschia australis using ribosomal RNA-targeted probes in sandwich and fluorescent in situ hybridization formats. Limnol. Oceanogr. Methods 2006, 4, 426–435. [Google Scholar] [CrossRef]
- Olson, R.J.; Sosik, H.M. A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot. Limnol. Oceanogr. Methods 2007, 5, 195–203. [Google Scholar] [CrossRef]
- Kim, H.; Kang, D.; Jung, S.W. Development and application of an acoustic system for harmful algal blooms (HABs, red tide) detection using an ultrasonic digital sensor. Ocean Sci J. 2018, 53, 91–99. [Google Scholar] [CrossRef]
- Kim, H.; Kang, D.; Jung, S.W.; Kim, M. High-frequency acoustic backscattering characteristics for acoustic detection of the red tide species Akashiwo sanguinea and Alexandrium affine. J. Ocean. Limno. 2019, 37, 1268–1276. [Google Scholar] [CrossRef]
- Chen, C.S.; Gao, G.P.; Zhang, Y.; Beardsley, R.C.; Lai, Z.G.; Qi, J.H.; Lin, H.C. Circulation in the Arctic Ocean: Results from a high-resolution coupled ice-sea nested Global-FVCOM and Arctic-FVCOM system. Prog. Oceanogr. 2016, 141, 60–80. [Google Scholar] [CrossRef]
- Huang, M.; Tian, Y. An Integrated Graphic Modeling System for Three-Dimensional Hydrodynamic and Water Quality Simulation in Lakes. ISPRS Int. J. Geo-Inf. 2019, 8, 18. [Google Scholar] [CrossRef]
- Cruz, R.C.; Reis Costa, P.; Vinga, S.; Krippahl, L.; Lopes, M.B. A Review of Recent Machine Learning Advances for Forecasting Harmful Algal Blooms and Shellfish Contamination. J. Mar. Sci. Eng. 2021, 9, 283. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, M. An Integrated Web-Based System for the Monitoring and Forecasting of Coastal Harmful Algae Blooms: Application to Shenzhen City, China. J. Mar. Sci. Eng. 2019, 7, 314. [Google Scholar] [CrossRef]
- Lee, C.K.; Park, T.G.; Park, Y.T.; Lim, W.A. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 2013, 30, S3–S14. [Google Scholar] [CrossRef]
- Park, T.G.; Lim, W.A.; Park, Y.T.; Lee, C.K.; Jeong, H.J. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 2013, 30, S131–S143. [Google Scholar] [CrossRef]
- Lim, W.A.; Lee, Y.S.; Lee, S.G. Characteristic of Environmental Factors Related to Outbreak and Decline of Cochlodinium polykrikoides Bloom in the southeast coastal waters of Korea, 2007. J. Kor. Soc. Oceano. 2008, 7, 68–77. (In Korean) [Google Scholar]
- Lim, W.A.; Jung, C.S.; Lee, C.K.; Cho, Y.C.; Lee, S.G.; Kim, H.G.; Chung, I.K. The outbreak, maintenance, and decline of the red tide dominated by Cochlodinium polykrikoides in the coastal waters off southern Korea from August to October, 2000. J. Kor. Soc. Oceano. 2002, 7, 68–77. (In Korean) [Google Scholar]
- Shim, J.-M.; Hwang, J.-D.; Jeong, C.-S.; Lee, Y.-H.; Jeon, K.-A.; Kwon, K.-Y. The influence of oceanic conditions on the occurrence of Cochlodinium polykrikoides blooms in the East Sea. J. Env. Sci. 2010, 19, 1385–1395. (In Korean) [Google Scholar] [CrossRef]
- Noh, J.H.; Kim, W.; Son, S.H.; Ahn, J.H.; Park, Y.J. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI). Harmful Algae 2018, 73, 129–137. [Google Scholar] [CrossRef]
- Park, K.S.; Heo, K.Y.; Jun, K.; Kwon, J.I.; Kim, J.; Choi, J.Y.; Cho, K.H.; Choi, B.J.; Seo, S.N.; Kim, Y.H.; et al. Development of the operational oceanographic system of Korea. Ocean Sci. J. 2015, 50, 353–369. [Google Scholar] [CrossRef]
- Bak, S.H.; Jeong, M.J.; Hwang, D.H.; Enkhjargal, U.; Yoon, H.J. Study on Cochlodinium polykrikoides Red tide Prediction using Deep Neural Network under Imbalanced Data. J. Kor. Ins. Electro. Com. Sci. 2019, 14, 1161–1170. (In Korean) [Google Scholar] [CrossRef]
- Cho, H.Y.; Park, K.S.; Kim, S. Global parameter estimation of the Cochlodinium polykrikoides model using bioassay data. Acta Oceanol. Sin. 2016, 35, 39–45. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Tomlinson, M.C.; Calkins, J.A.; Kirkpatrick, B.; Fisher, K.; Nierenberg, K.; Wynne, T.T. Skill assessment for an operational algal bloom forecast system. J. Mar. Sys. 2009, 76, 151. [Google Scholar] [CrossRef]
System | Variable | Data | Resolution | Site | Data Period | Data Format |
---|---|---|---|---|---|---|
Detection system | Ocean weather (AWS) | Date, time, GPS, air temperature, solar radiation, wind speed, and wind direction data | Point (Station) | T, G, Y | 10 min (Continuous) | csv |
Acoustic and ocean environment (RASS, WTSS) | (1) RASS: Date, time, GPS, acoustic intensity, water temperature, and salinity (Some stations: Chl-a, dissolved oxygen (DO), and pH (2) WTSS: Date, time, GPS, water temperature, and water pressure | Point (Station) | T, G, Y | 10 min (Continuous) | csv | |
Satellite (GOCI) | Date, time, GPS, and chlorophyll-a concentration (RBR) | 500 m | T, G, Y | 1 h (8 times/daytime) | netCDF | |
500 m | S | 1 h (8 times/daytime) | netCDF | |||
Prediction system (model) | Korea operational oceanographic system (KOOS) model | (1) Marine meteorological information: Date, time, GPS, wind, and atmospheric pressure (2) Marine environmental information: Date, time, GPS, waves, tides, currents, ocean currents, water temperature, and salinity per depth | 150 m | T, G, Y | 1 time (72 h/1 h) | netCDF |
300 m | S | 1 time (72 h/1 h) | netCDF | |||
HAB occurrence model | Date, time, GPS, and presence or absence of HAB | 5 km | T, G, Y | 1 time (after 72 h) | csv | |
HAB movement and diffusion model | Date, time, GPS, and level of HAB | 300 m | S | 1 time (72 h/1 h) | netCDF | |
Additional data (others) | HAB information 1 (from NIFS) | Date, time, GPS, and C. polykrikoides population | Point | T, G, Y, S | 1 day | netCDF |
HAB information 2 (from our application) | Date, time, GPS, and C. polykrikoides population | Point | T, G, Y, S | 1 day | csv | |
Information system | FTP server | - | Real-time | |||
Integrated visualization system | - | T, G, Y, S | Real-time | Web-based |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Kim, B.K.; Jung, S.W.; Baek, S.H.; Choi, J.-Y.; Cho, H.-Y.; Lee, S.-J.; Kim, H. Development and Application of an Integrated System for the Detection and Prediction of Harmful Algal Blooms in Korea. J. Mar. Sci. Eng. 2023, 11, 2207. https://doi.org/10.3390/jmse11122207
Kang D, Kim BK, Jung SW, Baek SH, Choi J-Y, Cho H-Y, Lee S-J, Kim H. Development and Application of an Integrated System for the Detection and Prediction of Harmful Algal Blooms in Korea. Journal of Marine Science and Engineering. 2023; 11(12):2207. https://doi.org/10.3390/jmse11122207
Chicago/Turabian StyleKang, Donhyug, Byoung Kweon Kim, Seung Won Jung, Seung Ho Baek, Jin-Yong Choi, Hong-Yeon Cho, Sun-Ju Lee, and Hansoo Kim. 2023. "Development and Application of an Integrated System for the Detection and Prediction of Harmful Algal Blooms in Korea" Journal of Marine Science and Engineering 11, no. 12: 2207. https://doi.org/10.3390/jmse11122207
APA StyleKang, D., Kim, B. K., Jung, S. W., Baek, S. H., Choi, J. -Y., Cho, H. -Y., Lee, S. -J., & Kim, H. (2023). Development and Application of an Integrated System for the Detection and Prediction of Harmful Algal Blooms in Korea. Journal of Marine Science and Engineering, 11(12), 2207. https://doi.org/10.3390/jmse11122207