Study of Mechanical Properties of Three-Dimensional Framed Plate Protective Structures with Negative Poisson’s Ratio
Abstract
:1. Introduction
2. Structural Design
3. Theoretical Analysis of Mechanical Properties
3.1. Relative Density
3.2. Compression in Vertical Direction (Y Direction)
3.3. Compression in Lateral Direction (X Direction)
4. Verification and Discussion
4.1. Experimental Test
4.2. Numerical Simulation
4.3. Validation of Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Zhu, P.F.; Li, M.Y.; Ma, Y.X.; Zhang, J.; Wu, L. Negative Poisson ratio design and flexural performance of reinforced concrete. Bull. Chin. Ceram. Soc. 2023, 42, 1640–1649. (In Chinese) [Google Scholar]
- Liu, T.; Xiao, Z.M.; Huang, C.J. Impact resistance of new cross negative Poisson’s ratio honeycomb structure. J. Vib. Shock 2023, 42, 183–192. (In Chinese) [Google Scholar]
- Qi, D.; Lu, Q.; He, C.; Li, Y.; Wu, W.; Xiao, D. Impact energy absorption of functionally graded chiral honeycomb structures. Extrem. Mech. Lett. 2019, 32, 100568. [Google Scholar] [CrossRef]
- Wang, T.; An, J.; He, H.; Wen, X.; Xi, X. A novel 3D impact energy absorption structure with negative Poisson’s ratio and its application in aircraft crashworthiness. Compos. Struct. 2021, 262, 113663. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. Part B Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
- Xiang, J.; Du, J. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading. Mater. Sci. Eng. A 2017, 696, 283–289. [Google Scholar] [CrossRef]
- Sun, T.W.; Tao, X.X.; Wang, X.H.; Li, J.J.; Wang, L.H. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material. Explos. Shock Waves 2020, 40, 64–74. (In Chinese) [Google Scholar]
- Qiao, J.X.; Chen, C.Q. Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs. J. Appl. Mech. 2015, 82, 051007. [Google Scholar] [CrossRef]
- Mousanezhad, D.; Haghpanah, B.; Ghosh, R.; Hamouda, A.M.; Nayeb-Hashemi, H.; Vaziri, A. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach. Theor. Appl. Mech. Lett. 2016, 6, 81–96. [Google Scholar] [CrossRef]
- Novak, N.; Hokamoto, K.; Vesenjak, M.; Ren, Z. Mechanical behaviour of auxetic cellular structures built from inverted tetrapods at high strain rates. Int. J. Impact Eng. 2018, 122, 83–90. [Google Scholar] [CrossRef]
- Novak, N.; Vesenjak, M.; Ren, Z. Auxetic cellular materials-a review. J. Mech. Eng. 2016, 62, 485–493. [Google Scholar] [CrossRef]
- Gao, X.; Wei, J.; Huo, J.; Wan, Z.; Li, Y. The Vibration Isolation Design of a Re-Entrant Negative Poisson’s Ratio Metamaterial. Appl. Sci. 2023, 13, 9442. [Google Scholar] [CrossRef]
- Chen, H.; Li, F. Design of quadrilateral zero-Poisson’s ratio metamaterial and its application in ship explosion-proof hatch door. Ocean Eng. 2022, 266, 112667. [Google Scholar]
- Xu, Y.; Shi, W.; Liu, M. Dual-gradient structure of natural cellular materials for the design of auxetic metamaterials. Sci. China Mater. 2023, 66, 3022–3025. [Google Scholar] [CrossRef]
- Grima, J.N.; Evans, K.E. Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 2000, 19, 1563–1565. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Farrugia, P.S. On the properties of auxetic meta-tetrachiral structures. Phys. Status Solidi B 2008, 245, 511–520. [Google Scholar] [CrossRef]
- Fu, M.H.; Chen, Y.; Hu, L.L. A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos. Struct. 2017, 160, 574–585. [Google Scholar] [CrossRef]
- Larsen, U.D.; Signund, O.; Bouwsta, S. Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectromech. Syst. 1997, 6, 99–106. [Google Scholar] [CrossRef]
- Rafsanjani, A.; Pasini, D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extrem. Mech. Lett. 2016, 9, 291–296. [Google Scholar] [CrossRef]
- Grima, J.N.; Zammit, V.; Gatt, R.; Alderson, A.; Evans, K.E. Auxetic behaviour from rotating semi-rigid units. Phys. Status Solidi B 2007, 244, 866–882. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Q.; Li, X.; Yang, Z. Elastic properties of two novel auxetic 3D cellular structures. Int. J. Solids Struct. 2017, 124, 46–56. [Google Scholar] [CrossRef]
- Ingrole, A.; Hao, A.; Liang, R. Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 2017, 117, 72–83. [Google Scholar] [CrossRef]
- Qiao, J.; Chen, C. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs. Int. J. Impact Eng. 2015, 83, 47–58. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, J. Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility. Extrem. Mech. Lett. 2017, 12, 77–85. [Google Scholar] [CrossRef]
- Ajdari, A.; Nayeb-Hashemi, H.; Vaziri, A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. Int. J. Solids Struct. 2011, 48, 506–516. [Google Scholar] [CrossRef]
- Choi, J.; Lakes, R. Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int. J. Mech. Sci. 1995, 37, 51–59. [Google Scholar] [CrossRef]
- Yang, L.; Harrysson, O.; West, H.; Cormier, D. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 2015, 69–70, 475–490. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Ma, Z.D.; Wang, T. Parametric analysis of a cylindrical negative Poisson’s ratio structure. Smart Mater. Struct. 2016, 25, 035038. [Google Scholar] [CrossRef]
- Babaee, S.; Shim, J.; Weaver, J.C.; Chen, E.R.; Patel, N.; Bertoldi, K. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 2013, 25, 5044–5049. [Google Scholar] [CrossRef]
- Wei, L.L.; Zhao, X.; Yu, Q.; Zhu, G.H. A novel star auxetic honeycomb with enhanced in-plane crushing strength. Thin-Walled Struct. 2020, 149, 106623. [Google Scholar] [CrossRef]
- Wei, L.L.; Zhao, X.; Yu, Q.; Zhu, G.H. Quasi-static axial compressive properties and energy absorption of star-triangular auxetic honeycomb. Compos. Struct. 2021, 267, 113850. [Google Scholar] [CrossRef]
- Wei, L.L.; Xu, S.W.; Zhu, G.H.; Zhao, X.; Shi, P.L. In-plane compression behavior of a novel 3D auxetic honeycomb. Mater. Today Commun. 2023, 35, 105729. [Google Scholar] [CrossRef]
- Bodaghi, M.; Namvar, N.; Yousefi, A.; Teymouri, H.; Demoly, F.; Zolfagharian, A. Metamaterial boat fenders with supreme shape recovery and energy absorption/dissipation via FFF 4D printing. Smart Mater. Struct. 2023, 32, 095028. [Google Scholar] [CrossRef]
- Hamzehei, R.; Serjouei, A.; Wu, N.; Zolfagharian, A.; Bodaghi, M. 4D metamaterials with zero poisson’s ratio, shape recovery, and energy absorption features. Adv. Eng. Mater. 2022, 24, 2200656. [Google Scholar] [CrossRef]
- Wang, J.; Luo, X.; Wang, K.; Yao, S.; Peng, Y. On impact behaviors of 3D concave structures with negative Poisson’s ratio. Compos. Struct. 2022, 298, 115999. [Google Scholar] [CrossRef]
- Li, Q.; Cao, X.; Wu, X.; Chen, W.; Li, C.; Li, X. Investigation of the Energy Absorption Characteristics and Negative Poisson’s Ratio Effect of an Improved Star-Shaped Honeycomb. J. Mar. Sci. Eng. 2023, 11, 1799. [Google Scholar] [CrossRef]
- GB/T 1453-2022; Test Method for Flatwise Compression Properties of Sandwich Constructions or Cores. State Administration for Market Regulation and Standardization Administration of China: Beijing, China, 2022.
- Wang, Z.; Chen, G.; Cao, X.; Chen, W.; Li, C.B.; Li, X. Study on the Effect of Nodal Configuration on the Mechanical Properties of Hexa-Ligamentous Chiral Honeycombs. J. Mar. Sci. Eng. 2023, 11, 1692. [Google Scholar] [CrossRef]
- Li, P. Impact Dynamics of a Novel Three-Dimensional Honeycomb. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2023. (In Chinese). [Google Scholar]
Densities g/cm3 | Poisson’s Ratio ν | Modulus of Elasticity E (MPa) |
---|---|---|
1.11 | 0.4 | 2600 |
(mm) | (mm) | (mm) | (mm) | ||
---|---|---|---|---|---|
50° | 10 | 2 | 40 | 20 | |
60° | 10 | 2 | 40 | 20 | |
70° | 10 | 2 | 40 | 20 |
X | |||
Y |
) | Loading Direction | Equivalent Poisson’s Ratio | Equivalent Modulus of Elasticity (EX/E&EY/E) |
---|---|---|---|
50 | X | −1.382 | 0.0480 |
50 | Y | −0.646 | 0.00231 |
60 | X | −0.904 | 0.0311 |
60 | Y | −0.955 | 0.00362 |
70 | X | −0.547 | 0.0269 |
70 | Y | −1.426 | 0.00769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Li, M.; Li, P.; Li, Q.; Chen, W. Study of Mechanical Properties of Three-Dimensional Framed Plate Protective Structures with Negative Poisson’s Ratio. J. Mar. Sci. Eng. 2023, 11, 2261. https://doi.org/10.3390/jmse11122261
Lin W, Li M, Li P, Li Q, Chen W. Study of Mechanical Properties of Three-Dimensional Framed Plate Protective Structures with Negative Poisson’s Ratio. Journal of Marine Science and Engineering. 2023; 11(12):2261. https://doi.org/10.3390/jmse11122261
Chicago/Turabian StyleLin, Weijun, Mengzhen Li, Pu Li, Qianning Li, and Wei Chen. 2023. "Study of Mechanical Properties of Three-Dimensional Framed Plate Protective Structures with Negative Poisson’s Ratio" Journal of Marine Science and Engineering 11, no. 12: 2261. https://doi.org/10.3390/jmse11122261
APA StyleLin, W., Li, M., Li, P., Li, Q., & Chen, W. (2023). Study of Mechanical Properties of Three-Dimensional Framed Plate Protective Structures with Negative Poisson’s Ratio. Journal of Marine Science and Engineering, 11(12), 2261. https://doi.org/10.3390/jmse11122261