Coastal Flood Risk Assessment: An Approach to Accurately Map Flooding through National Registry-Reported Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. SPIN Database
2.2. Confirmation of the SPIN-Recorded Flooding Events
2.3. Geolocation of the Confirmed Flooding Events
2.4. Analysis of the Validated Flooding Geolocations
2.5. Geographic Information Sources and Systems
3. Results
3.1. Basic Geographical Data of the Study Area
3.2. Flooding Events from SPIN Database
3.3. Incidence of Coastal Flooding in Piran
3.4. Geographical Distribution of Coastal Flooding Events in Piran
4. Discussion
- The improvement of the registration process for entries to the SPIN, ensuring more timely and accurate alerts for the community. A crucial suggestion is the exclusive reporting by trained experts to ensure consistency and comparability in entries. The consistent use of geographical names or the introduction of town-specific polygon selection is emphasized for precise location reporting.
- A consistent approach among first respondents should also include mandatory inspections of low-lying areas to avoid misinterpretation of retreating water levels, ensuring comprehensive and accurate flood reporting and management.
- First respondents should also gather basic field data by mapping the flooded areas, utilizing basic GIS tools for accuracy.
- The integration of field observations with local-level smart sensor data is advocated for a more robust early warning system.
- The establishment of a simple automatic instrument system, primarily in highly populated and frequently flooded areas at the Slovenian coast, is proposed for efficient data gathering. For example, more precise classification of sea flooding events in which the more common and less damaging floods would be distinguished from the more severe ones. Alternatively, to avoid complications and ambiguities, each entry could carry the information regarding initial tidal level of the warning and actual peak water level during the flood event. This enhancement, even in the absence of other upgrades, would bolster sea level monitoring, aiding timely response and accurate on-site assessments by first responders.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- IPCC. Sections. In Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; p. 755. [Google Scholar] [CrossRef]
- Makris, C.V.; Tolika, K.; Balitkas, V.N.; Velikou, K.; Krestenitis, Y.M. The impact of climate change on the storm surges of the Mediterranean Sea: Coastal sea level responses to deep depression atmospheric systems. Ocean. Model. 2023, 181, 102149. [Google Scholar] [CrossRef]
- Pomaro, A.; Cavaleri, L.; Lionello, P. Climatology and trends of the Adriatic Sea wind waves: Analysis of a 37-year long instrumental data set. Int. J. Climatol. 2017, 37, 4237–4250. [Google Scholar] [CrossRef]
- Porcù, F.; Aragão, L.; Aguzzi, M.; Valentini, A.; Debele, S.; Humar, P.; Loupis, M.; Montesarchio, M.; Mercogliano, P.; Di Sabatino, S. Extreme wave events attribution using ERA5 datasets for storm-surge studies in the northern Adriatic sea. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020; p. EGU2020-19443. [Google Scholar] [CrossRef]
- Postacchini, M.; Melito, L.; Ludeno, G. Nearshore observations and modeling: Synergy for coastal flooding prediction. J. Mar. Sci. Eng. 2023, 11, 1504. [Google Scholar] [CrossRef]
- Rizzi, J.; Torresan, S.; Gallina, V.; Critto, A.; Marcomini, A. Regional risk assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea. In Proceedings of the EGU General Assembly, Geographical Research Abstracts, Vienna, Austria, 7–12 April 2013; Volume 15, p. EGU2013-7026. [Google Scholar]
- Riminucci, F.; Capotondi, L.; Ravaioli, M.; Bergami, C. In-situ high resolution turbidity time series to describe storm resuspension events along the North-Western Adriatic shelf. In Proceedings of the XXVI Congresso dell’Assozione Italiana di Oceanologia e Limnologia, S. Michele all’Adige, Italy, 28 June–1 July 2022. [Google Scholar]
- Lionello, P.; Cavaleri, L.; Nissen, K.M.; Pino, C.; Raicich, F.; Ulbrich, U. Severe marine storms in the Northern Adriatic: Characteristics and trends. Phys. Chem. Earth Parts A/B/C 2012, 40–41, 93–105. [Google Scholar] [CrossRef]
- Lionello, P.; Triggo, I.F.; Gil, V.; Liberato, M.L.R.; Nissen, K.M.; Pinto, J.G.; Raible, C.C.; Reale, M.; Tanzarella, A.; Trigo, R.M.; et al. Objective climatology of cyclones in the Mediterranean region: A consensus view among methods with different system identification and tracking criteria. Tellus 2016, 68, 29391. [Google Scholar] [CrossRef]
- Kryžanowski, A.; Alivio, M.B.; Rusjan, S.; Vidmar, A. Ocena poplavne škode na območju mesta Piran zaradi naraščajoče gladina morje. In Proceedings of the Zbornik 32 Mišičev Vodarski Dan, Maribor, Slovenia, 2 December 2021; pp. 131–138. Available online: https://www.mvd20.com/LETO2021/R16.pdf (accessed on 23 October 2023).
- Ličer, M. Podnebne Spremembe in Naraščanje Gladine Morja v Severnem Jadranu (Climate Change and Sea Level Rise in the North Adriatic); National Institute of Biology—Marine Biological Station Piran: Piran, Slovenia, 2020; Available online: https://www.nib.si/mbp/sl/home/news/902-podnebne-spremembe-in-narascanje-gladine-morja-v-severnem-jadranu (accessed on 23 October 2023).
- Zanchettin, D.; Bruni, S.; Raicich, F.; Liomello, P.; Adloff, F.; Androsov, A.; Antonioli, F.; Artale, V.; Carminati, E.; Ferrarin, C.; et al. Sea-level rise in Venice: Historic and future trends. Nat. Hazards Earth Syst. Sci. 2021, 21, 2643–2678. [Google Scholar] [CrossRef]
- Alivio, M.B. Evaluation of Flood Damage Caused by Rising Sea Levels. Ocena Poplavne Škode na Območju Mesta Piran Zaradi Naraščajoče Gladina Morje. Master’s Thesis, University of Ljubljana, Faculty for Civil and Geodetic Engineering, Ljubljana, Slovinia, 2021. Available online: https://repozitorij.uni-lj.si/Dokument.php?id=146697&lang=slv (accessed on 23 October 2023).
- Lionello, P.; Barriopedro, D.; Ferrarin, C.; Nicholls, R.J.; Orlić, M.; Raicich, F.; Reale, M.; Umgiesser, G.; Vousdoukas, M.; Zanchettin, D. Extreme floods of Venice: Characteristics, dynamics, past and future evolution. Nat. Hazards Earth Syst. 2021, 21, 2705–2731. [Google Scholar] [CrossRef]
- Ferrarin, C.; Orlić, M.; Bajo, M.; Davolio, S.; Umgiesser, G.; Lionello, P. The contribution of a mesoscale cyclone and associated meteotsunami to the exceptional flood in Venice on November 12, 2019. Q. J. R. Meteorol. Soc. 2023, 149, 2929–2942. [Google Scholar] [CrossRef]
- Kolega, N. Slovenian coast sea floods risk. Acta Geogr. Slov. 2006, 46, 143–169. [Google Scholar] [CrossRef]
- Brečko Grubar, V.; Kovačič, G.; Kolega, N. Podnebne spremembe vplivajo na pogostejše poplave morja Climate change increasing frequency of sea flooding. Geogr. Šoli 2019, 27, 30–34. [Google Scholar] [CrossRef]
- Poklar, M.; Brečko Grubar, V. Assessing coastal vulnerability to sea level rise: The case study of Slovenia. Egypt. J. Environ. Chang. 2023, 15, 7–24. [Google Scholar] [CrossRef]
- Kovačič, G.; Kolega, N.; Brečko Grubar, V. Vpliv podnebnih sprememb na količine vode in poplave morja v slovenski Istri Climate change impacts on water quantities and sea flooding in Slovene Istria. Geogr. Vestn. 2016, 88, 21–36. [Google Scholar] [CrossRef]
- Zorn, M.; Komac, B. Sustainable mountain regions: Make them work: Natural disasters versus cultural and natural heritage. In Proceedings of the International Scientific Conference Proceedings, Borovets, Bulgaria, 14–16 May 2015; pp. 123–128. [Google Scholar]
- Fondazione Scuola dei Beni e Delle Attività Culturali. Three key questions on culture, cultural heritage and climate change. In Proceedings of the Round Table; Fondazione Scuola dei Beni e Delle Attività Culturali: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Machado de Almedia, L.B. Flood Risk and Damage Investigation in Areas of High Cultural Heritage Value. Master’s Thesis, University of Ljubljana, Faculty for Civil and Geodetic Engineering, Ljubljana, Slovenia, 2023. Available online: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=148920 (accessed on 23 October 2023).
- SCORE—Smart Control of the Climate Resilience of European Coastal Cities. Available online: https://score-eu-project.eu/ (accessed on 23 October 2023).
- Kumer, P.; Meulenberg, C.J.W.; Mackenzie Hawke, S. Piran coastal city living lab (CCLL): Challenges and opportunities. In First SCORE Consortium Meeting; Atlantic Technological University: Sligo, Ireland, 2022; poster 11. [Google Scholar]
- Kumer, P.; Meulenberg, C.J.W.; Kralj, E. Challenges for planning climate change resilience through the co-creation living lab approach in the Mediterranean coastal town of Piran. J. Geogr. 2022, 17, 89–106. [Google Scholar] [CrossRef]
- Anton, I.; Paranunzio, R.; Gharbia, S.; Baldin, L.; Ahmed, T.; Giannetti, F.; Brandini, C.; Ortolani, A.; Meulenberg, C.; Adirosi, E.; et al. Challenges in retrieving and using climate services’ data for local-scale impact studies: Insights from the SCORE project. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022; p. EGU22-5469. [Google Scholar] [CrossRef]
- Laino, E.; Iglesias, G. Extreme climate change hazards and impacts on European coastal cities: A review. Renew. Sustain. Energy Rev. 2023, 184, 113587. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Li, H.; Calder, A.A.; Noel, C. Beyond Moran’s I: Testing for Spatial Dependence Based on the spatial autoregressive model. Geogr. Anal. 2007, 39, 357–375. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Oxfordshire, UK, 1981. [Google Scholar]
- Ličer, M.; Žust, L.; Kristan, M. Prepletanje umetne inteligence in fizike pri napovedovanju obalnih poplav. Alternator 2021, 35. [Google Scholar] [CrossRef]
- Žust, J.; Fettich, A.; Kristan, M.; Ličer, M. HIDRA 1.0: Deep-learning-based ensemble sea level forecasting in the Northern Adriatic. Geosci. Model Dev. 2021, 14, 2057–2074. [Google Scholar] [CrossRef]
- Rus, M.; Fettich, A.; Kristan, M.; Ličer, M. HIDRA 2.0: Deep-learning-based ensemble sea level and storm tide forecasting in in the presence of seiches—The case of the Northern Adriatic. Geosci. Model Dev. 2023, 16, 271–288. [Google Scholar] [CrossRef]
- Supporting Energy and Climate Adaptation Project—SECAP. Available online: https://climate-adapt.eea.europa.eu/en/metadata/projects/supporting-energy-and-climate-adaptation-policies (accessed on 23 October 2023).
- Integrated Sea sTORm Management Strategies—I-STORMS. Available online: https://istorms.adrioninterreg.eu/ (accessed on 23 October 2023).
- An Information Platform for Strengthening Climate Change Resilience for the Adriatic Coastal Local Communities—AdriAdapt. Available online: https://adriadapt.eu/ (accessed on 23 October 2023).
- Paranunzio, R.; Anton, I.; Adirosi, E.; Ahmed, T.; Baldini, L.; Brandini, C.; Giannetti, F.; Meulenberg, C.J.W.; Ortolani, A.; Pilla, F.; et al. A new approach towards a user-driven coastal climate service to enhance climate resilience in European cities. Sustainability, 2023; Submitted, upcoming. [Google Scholar]
- Sánchez-García, E.; Rodríguez-Gamino, E.; Bacciu, V.; Chiarle, M.; Costa-Saura, J.; Garrido, M.V.; Lledó, L.; Navascués, B.; Paranunzio, R.; Terzago, S.; et al. Co-design of sectoral climate services based on seasonal prediction information in the Mediterranean. Clim. Serv. 2022, 28, 100337. [Google Scholar] [CrossRef]
- The International Disaster Database EM-DAT. Centre for Research on the Epidemiology of Disasters. Institute of Health and Society, University of Louvain, Belgium. Available online: https://www.emdat.be/ (accessed on 23 October 2023).
- Oliveira Tavares, A.; Leandro Barros, J.; Freire, P.; Pinto Santos, P.; Perdiz, L.; Bustorff Fortunato, A. A coastal flooding database from 1980 to 2018 for the continental Portuguese coast zone. Appl. Geogr. 2021, 135, 102534. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kralj, E.; Kumer, P.; Meulenberg, C.J.W. Coastal Flood Risk Assessment: An Approach to Accurately Map Flooding through National Registry-Reported Events. J. Mar. Sci. Eng. 2023, 11, 2290. https://doi.org/10.3390/jmse11122290
Kralj E, Kumer P, Meulenberg CJW. Coastal Flood Risk Assessment: An Approach to Accurately Map Flooding through National Registry-Reported Events. Journal of Marine Science and Engineering. 2023; 11(12):2290. https://doi.org/10.3390/jmse11122290
Chicago/Turabian StyleKralj, Erik, Peter Kumer, and Cécil J. W. Meulenberg. 2023. "Coastal Flood Risk Assessment: An Approach to Accurately Map Flooding through National Registry-Reported Events" Journal of Marine Science and Engineering 11, no. 12: 2290. https://doi.org/10.3390/jmse11122290
APA StyleKralj, E., Kumer, P., & Meulenberg, C. J. W. (2023). Coastal Flood Risk Assessment: An Approach to Accurately Map Flooding through National Registry-Reported Events. Journal of Marine Science and Engineering, 11(12), 2290. https://doi.org/10.3390/jmse11122290