Effects of Mooring Line with Different Materials on the Dynamic Response of Offshore Floating Wind Turbine
Abstract
:1. Introduction
2. The Theories of Wind Load, Platform Response, and Mooring Line Tension
2.1. Blade Element Momentum Theory
2.2. Cummin’s Theory
2.3. Mooring Line Theory
2.4. Wind Turbine Power Output Theory
3. Numerical Model of Mooring Systems for Offshore Floating Wind Turbines
3.1. Numerical Model of the Floating Wind Turbine
3.2. Validation of Numerical Simulation Technology Using Literature Data
3.3. Mooring Systems of Floating Wind Turbines at 200 Water Depth
3.4. Environmental Load Cases
4. Results and Discussion
4.1. Blade Forces
4.2. Motion Response of the Floating Wind Turbine
4.3. Analysis of Line Tension Values of the Floating Wind Turbine
4.4. Analysis of the Power Generation of the Floating Wind Turbine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lian, Y.S.; Yim, C.S.; Zheng, J.H.; Liu, H.X.; Zhang, N. Effects of damaged fiber ropes on the performance of a hybrid taut-wire mooring system. J. Offshore Mech. Arct. Eng. 2020, 142, 011607. [Google Scholar] [CrossRef]
- Weller, S.D.; Johanning, L.; Davies, P.; Davies, P.; Banfield, S.J. Synthetic mooring ropes for marine renewable energy applications. Renew. Energy 2015, 83, 1268–1278. [Google Scholar] [CrossRef]
- Cermelli, C.; Roddier, D.; Aubault, A. WindFloat: A floating foundation for offshore wind turbines—Part II: Hydrodynamics analysis. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Honolulu, HI, USA, 31 May–5 June 2009; Volume 43444, pp. 135–143. [Google Scholar]
- Brommundt, M.; Krause, L.; Merz, K.; Muskulus, M. Mooring system optimization for floating wind turbines using frequency domain analysis. Energy Procedia 2012, 24, 289–296. [Google Scholar] [CrossRef]
- Jeon, S.H.; Cho, Y.U.; Seo, M.W.; Cho, J.R.; Jeong, W.B. Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables. Ocean. Eng. 2013, 72, 356–364. [Google Scholar] [CrossRef]
- Yuan, Z.M.; Incecik, A.; Ji, C. Numerical study on a hybrid mooring system with clump weights and buoys. Ocean. Eng. 2014, 88, 1–11. [Google Scholar] [CrossRef]
- Benassai, G.; Campanile, A.; Piscopo, V.; Scamardella, A. Mooring control of semi-submersible structures for wind turbines. Procedia Eng. 2014, 70, 132–141. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Yi, Q.; Chen, D.Y. Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 60, 433–449. [Google Scholar] [CrossRef]
- Campanile, A.; Piscopo, V.; Scamardella, A. Mooring design and selection for floating offshore wind turbines on intermediate and deep water depths. Ocean. Eng. 2018, 148, 349–360. [Google Scholar] [CrossRef]
- Xu, K.; Gao, Z.; Moan, T. Effect of hydrodynamic load modelling on the response of floating wind turbines and its mooring system in small water depths. In Proceedings of the EERA DeepWind’2018, 15th Deep Sea Offshore Wind R&D Conference, Trondheim, Norway, 17–19 January 2018; IOP Publishing: Bristol, UK, 2018; Volume 1104, p. 012006. [Google Scholar]
- Ma, G.; Zhong, L.; Zhang, X.; Ma, Q.W.; Kang, H.S. Mechanism of mooring line breakage of floating offshore wind turbine under extreme coherent gust with direction change condition. J. Mar. Sci. Technol. 2020, 25, 1283–1295. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Q.; Liu, L.; Tang, Y.G. Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines. Renew. Energy 2018, 122, 576–588. [Google Scholar] [CrossRef]
- Bae, Y.H.; Kim, M.H.; Kim, H.C. Performance changes of a floating offshore wind turbine with broken mooring line. Renew. Energy 2017, 101, 364–375. [Google Scholar] [CrossRef]
- Pham, H.D.; Cartraud, P.; Schoefs, F.; Soulard, T.; Berhault, C. Dynamic modeling of nylon mooring lines for a floating wind turbine. Appl. Ocean. Res. 2019, 87, 1–8. [Google Scholar] [CrossRef]
- Xu, K.; Larsen, K.; Shao, Y.; Zhang, M.; Gao, Z.; Moan, T. Design and comparative analysis of alternative mooring systems for floating wind turbines in shallow water with emphasis on ultimate limit state design. Ocean. Eng. 2021, 219, 108377. [Google Scholar] [CrossRef]
- Xiang, G.; Xiang, X.; Yu, X. Dynamic Response of a SPAR-Type Floating Wind Turbine Foundation with Taut Mooring System. J. Mar. Sci. Eng. 2022, 1, 1907. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Liu, H.X. Coupled dynamic analysis on floating wind farms with shared mooring under complex conditions. Ocean. Eng. 2023, 267, 113323. [Google Scholar] [CrossRef]
- Sorum, S.H.; Fonseca, N.; Kent, M.; Faria, R.P. Modelling of Synthetic Fibre Rope Mooring for Floating Offshore Wind Turbines. J. Mar. Sci. Eng. 2023, 11, 193. [Google Scholar] [CrossRef]
- Hall, M.; Moreno, J.; Thiagarajan, K. Performance specifications for real-time hybrid testing of 1: 50-scale floating wind turbine models. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 45547, p. V09BT09A047. [Google Scholar]
- Chevillotte, Y.; Marco, Y.; Bles, G.; Devos, K.; Keryer, M.; Arhant, M.; Davies, P. Fatigue of improved polyamide mooring ropes for floating wind turbines. Ocean. Eng. 2020, 199, 107011. [Google Scholar] [CrossRef]
- Xue, X.; Sandy, D. Experimental investigation on dynamic responses of a spar-type offshore floating wind turbine and its mooring system behaviour. Ocean. Eng. 2021, 199, 109488. [Google Scholar] [CrossRef]
- Coulling, A.J.; Goupee, A.J.; Robertson, A.N.; Jonkman, J.M.; Dagher, H.J. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. J. Renew. Sustain. Energy 2013, 5, 023116. [Google Scholar] [CrossRef]
- Azcona, J.; Munduate, X.; González, L.; Nygaardc, A.T. Experimental validation of a dynamic mooring lines code with tension and motion measurements of a submerged chain. Ocean. Eng. 2017, 129, 415–427. [Google Scholar] [CrossRef]
- Hall, M.; Goupee, A. Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data. Ocean. Eng. 2015, 104, 590–603. [Google Scholar] [CrossRef]
- Hall, M. Moordyn v2: New capabilities in mooring system components and load cases. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Fort Lauderdale, FL, USA, 28 June–3 July 2020; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84416, p. V009T09A078. [Google Scholar]
- West, W.M.; Goupee, A.J.; Allen, C.K.; Viselli, A.M. Floating Wind Turbine Model Test to Verify a MoorDyn Modification for Nonlinear Elastic Materials. J. Offshore Mech. Arct. Eng. 2022, 144, 032003. [Google Scholar] [CrossRef]
- Bosman, R.; Zhang, Q.; Leao, A. First Class Certification on HMPE Fiber Ropes for Permanent Floating Wind Turbine Mooring System. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2020. [Google Scholar]
- Sorum, S.H.; Fonseca, N.; Kent, M.; Faria, R.P. Assessment of nylon versus polyester ropes for mooring of floating wind turbines. Ocean. Eng. 2023, 278, 114–339. [Google Scholar] [CrossRef]
- Moriarty, P.J.; Hansen, A.C. AeroDyn Theory Manual; National Renewable Energy Lab.: Golden, CO, USA, 2005. [Google Scholar]
- Moriarty, P.J.; Hansen, A.C. Openfast Theory Manual; National Renewable Energy Lab.: Golden, CO, USA, 2020. [Google Scholar]
- Robertson, A.; Jonkman, J.; Masciola, M. Definition of the Semisubmersible Floating System for Phase II of OC4; National Renewable Energy Lab.: Golden, CO, USA, 2014. [Google Scholar]
- Lian, Y.S.; Zheng, J.H.; Liu, H.X.; Xu, P.F. A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling. Ocean. Eng. 2018, 162, 43–54. [Google Scholar] [CrossRef]
- Connolly, p.; Hall, M. Comparison of pilot-scale floating offshore wind farms with shared moorings. Ocean. Eng. 2019, 171, 172–180. [Google Scholar] [CrossRef]
- Pan, Q.; Mahfouz, M.Y.; Lemmer, F. Assessment of mooring configurations for the IEA 15MW floating offshore wind turbine. In Proceedings of the EERA DeepWind'2021, Trondheim, Norway, 13–15 January 2021; IOP Publishing: Bristol, UK, 2021; Volume 2018, p. 012030. [Google Scholar] [CrossRef]
- Vryhof Anchors. The Guide to Anchoring; Vryhof Anchors: Schiedam, The Netherlands, 2015. [Google Scholar]
- DNVGL-OS-E301; Position Mooring. DNV: Oslo, Norway, 2015.
- Monfort, D.T. Design Optimization of the Mooring System for a Floating Offshore Wind Turbine Foundation. Master’s Thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal, 2017. [Google Scholar]
- Liu, Z.; Zhou, Q.; Tu, Y.; Wang, W.; Hua, X.G. Proposal of a novel semi-submersible floating wind turbine platform composed of inclined columns and multi-segmented mooring lines. Energies 2019, 12, 1809. [Google Scholar] [CrossRef]
- Depalo, F.; Wang, S.; Xu, S.; Soares, C.G. Design and analysis of a mooring system for a wave energy converter. J. Mar. Sci. Eng. 2021, 9, 782. [Google Scholar] [CrossRef]
- API, RP.2FP1; Recommended Practice for Design, Analysis and Maintenance of Moorings for Floating Production Systems. American Petroleum Institute: Washington, DC, USA, 1993.
- API, RP.2SM; Recommended Practice for the Design, Manufacture, Installation, and Maintenance of Synthetic Fiber Ropes for Offshore Moorings. American Petroleum Institute: Washington, DC, USA, 2014.
Mooring Assembly | Parameter | Value |
---|---|---|
Chain lines | Diameter/mm | 76.6 |
) | 113.35 | |
Material damping ratio | −1.0 | |
EA/kN | ||
Lateral additional-mass coefficient | 0.8 | |
Tangential additional-mass coefficient | 0.25 | |
Lateral drag coefficient | 2.0 | |
Tangential drag coefficient | 0.4 |
National Petroleum Directorate (NPD) Wind Spectrum | JONSWAP Wave Spectrum | |||
---|---|---|---|---|
HubHt/m | ||||
20.6 | 90 | 10.5 | 14.3 | 3.0 |
Comparison Item | Source | Mean Values | St. Dev. Values | Max Values | Min Values | Errors of Mean Values |
---|---|---|---|---|---|---|
Surge | Lab data | 3.78 | 2.99 | 18.01 | −4.41 | 0 |
FAST (Coulling et al., 2013) | −0.14 | 2.01 | 8.09 | −6.79 | 147% | |
OpenFAST | 5.48 | 2.10 | 23.54 | −3.86 | 44.97% | |
Heave/m | Lab data | −0.07 | 1.73 | 5.87 | −6.50 | 0 |
FAST (Coulling et al., 2013) | 0.00 | 1.42 | 4.27 | −4.17 | 100% | |
OpenFAST | −0.06 | 1.12 | 4.37 | −3.81 | 14.29% | |
Pitch/° | Lab data | −0.02 | 1.55 | 6.94 | −6.09 | 0 |
FAST (Coulling et al., 2013) | −0.01 | 1.20 | 4.83 | −3.75 | 50% | |
OpenFAST | −0.015 | 1.14 | 6.97 | −5.11 | 25% | |
Fairlead 1 tension/kN | Lab data | 990.60 | 91.91 | 1403.00 | 431.80 | 0 |
FAST (Coulling et al., 2013) | 1111.00 | 60.05 | 1338.00 | 918.60 | 12.15% | |
OpenFAST | 1013.23 | 58.59 | 1332.64 | 588.01 | 2.28% | |
Fairlead 2 tension/kN | Lab data | 1344.00 | 468.00 | 5774.00 | 95.25 | 0 |
FAST (Coulling et al., 2013) | 1105.00 | 82.68 | 1541.00 | 879.50 | 17.78% | |
OpenFAST | 1389.16 | 398.60 | 5880.67 | 89.80 | 3.36% |
Parameters | Chain Mooring System | Hybrid Line Mooring System |
---|---|---|
Length/m | 835.5 | 835.5 |
Length of touchdown segment/m | 243.7 | 243.7 |
Clump weight | - | 3 |
HMPE line length/m | - | 306.8 |
Suspension length/m | 591.8 | 591.8 |
Mooring Assembly | Parameter | Value |
---|---|---|
Chain | Diameter/mm | 124 |
) | 308 | |
Material damping ratio | 1.0 | |
EA/kN | ||
Lateral additional-mass coefficient | 3.1 | |
Tangential additional-mass coefficient | 1.7 | |
Lateral drag coefficient | 2.6 | |
Tangential drag coefficient | 1.4 | |
Minimum breaking strength/kN | 14,358 | |
HMPE | Diameter/mm | 147 |
Sea State | Wind Spectrum | HubHt/m | ShearExp | |
---|---|---|---|---|
Operational sea state | API | 11 | 90 | 0.2 |
Extreme sea state | API | 35 | 90 | 0.2 |
Sea State | Wave Spectrum | |||
---|---|---|---|---|
Operational sea state | JONSWAP | 5 | 10 | 3.3 |
Extreme sea state | JONSWAP | 8 | 12 | 3.3 |
Sea State | Mooring Arrangement | Average Value/kN | Standard Deviation/kN | Maximum Value/kN | Minimum Value/kN |
---|---|---|---|---|---|
Operational sea state | Chain | 202.97 | 0.52 | 204.37 | 200.46 |
Hybrid line | 202.92 | 0.54 | 204.31 | 201.32 | |
Extreme sea state | Chain | 661.49 | 1.13 | 664.51 | 650.39 |
Hybrid line | 661.45 | 1.12 | 664.45 | 649.93 |
Sea State | Motion Response | Mooring Line Types | Average Value/kN | Standard Deviation/kN | Maximum Value/kN | Minimum Value/kN |
---|---|---|---|---|---|---|
Operational sea state | Sway/m | Chain | −0.11 | 0.00 | −0.10 | −0.12 |
Hybrid line | −0.10 | 0.05 | 0.06 | −0.26 | ||
Surge/m | Chain | 2.69 | 0.37 | 3.87 | 1.63 | |
Hybrid line | 2.87 | 0.40 | 4.16 | 1.71 | ||
Heave/m | Chain | −0.82 | 0.01 | −0.73 | −0.84 | |
Hybrid line | 0.03 | 0.01 | 0.13 | 0.01 | ||
Roll/° | Chain | 0.09 | 0.00 | 0.10 | 0.08 | |
Hybrid line | 0.10 | 0.01 | 0.14 | 0.05 | ||
Pitch/° | Chain | 1.59 | 0.04 | 1.71 | 1.48 | |
Hybrid line | 1.71 | 0.05 | 1.87 | 1.56 | ||
Yaw/° | Chain | −0.03 | 0.00 | −0.02 | −0.04 | |
Hybrid line | −0.06 | 0.01 | −0.02 | −0.09 | ||
Extreme sea state | Sway/m | Chain | −0.11 | 0.00 | 0.01 | −0.12 |
Hybrid line | 0.01 | 0.07 | 0.22 | −0.23 | ||
Surge/m | Chain | 3.98 | 0.48 | 5.33 | 2.77 | |
Hybrid line | 4.22 | 0.48 | 5.53 | 3.01 | ||
Heave/m | Chain | −0.81 | 0.02 | −0.55 | −0.85 | |
Hybrid line | 0.04 | 0.02 | 0.30 | 0.00 | ||
Roll/° | Chain | 0.30 | 0.00 | 0.31 | 0.27 | |
Hybrid line | 0.34 | 0.01 | 0.36 | 0.31 | ||
Pitch/° | Chain | 2.21 | 0.06 | 2.47 | 2.05 | |
Hybrid line | 2.36 | 0.07 | 2.61 | 2.16 | ||
Yaw/° | Chain | 0.10 | 0.01 | 0.13 | 0.07 | |
Hybrid line | 0.19 | 0.02 | 0.25 | 0.13 |
Mooring Number | Sea State | Mooring Line Types | Average Value/kN | Standard Deviation/kN | Maximum Value/kN | Minimum Value/kN |
---|---|---|---|---|---|---|
1 | Operational sea state | Chain | 2696.75 | 19.39 | 2746.78 | 2599.75 |
Hybrid line | 1034.40 | 17.11 | 1082.17 | 959.66 | ||
Extreme sea state | Chain | 2752.66 | 14.33 | 2789.64 | 2677.44 | |
Hybrid line | 1087.59 | 12.85 | 1124.45 | 1032.30 | ||
2 | Operational sea state | Chain | 3239.90 | 33.30 | 3404.43 | 3162.43 |
Hybrid line | 1575.67 | 31.21 | 1742.04 | 1507.99 | ||
Extreme sea state | Chain | 3421.43 | 53.32 | 3779.37 | 3315.09 | |
Hybrid line | 1758.97 | 50.55 | 2172.45 | 1640.58 |
Mooring Line Types | Average Value/kN | Standard Deviation/kN | Maximum Value/kN | Minimum Value/kN |
---|---|---|---|---|
Chain | 1650.50 | 7.44 | 1670.93 | 1625.99 |
Hybrid line | 1651.68 | 7.19 | 1672.11 | 1632.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Y.; Zhong, F.; Zheng, J.; Chen, W.; Ma, G.; Wang, S.; Yim, S.C. Effects of Mooring Line with Different Materials on the Dynamic Response of Offshore Floating Wind Turbine. J. Mar. Sci. Eng. 2023, 11, 2302. https://doi.org/10.3390/jmse11122302
Lian Y, Zhong F, Zheng J, Chen W, Ma G, Wang S, Yim SC. Effects of Mooring Line with Different Materials on the Dynamic Response of Offshore Floating Wind Turbine. Journal of Marine Science and Engineering. 2023; 11(12):2302. https://doi.org/10.3390/jmse11122302
Chicago/Turabian StyleLian, Yushun, Fan Zhong, Jinhai Zheng, Wenxing Chen, Gang Ma, Shan Wang, and Solomon C. Yim. 2023. "Effects of Mooring Line with Different Materials on the Dynamic Response of Offshore Floating Wind Turbine" Journal of Marine Science and Engineering 11, no. 12: 2302. https://doi.org/10.3390/jmse11122302
APA StyleLian, Y., Zhong, F., Zheng, J., Chen, W., Ma, G., Wang, S., & Yim, S. C. (2023). Effects of Mooring Line with Different Materials on the Dynamic Response of Offshore Floating Wind Turbine. Journal of Marine Science and Engineering, 11(12), 2302. https://doi.org/10.3390/jmse11122302