Unraveling the Origin of the Messinian? Evaporites in Zakynthos Island, Ionian Sea: Implications for the Sealing Capacity in the Mediterranean Sea
Abstract
:1. Introduction
2. Geological Setting
3. Previous Works and Their Results
3.1. Publications That Accept the Theory of Resedimented Turbiditic Deposits That Took Place during Early Pliocene
3.2. Publications That Accept the Theory of an Evaporitic Sequence That Accumulated during the Messinian Time
3.3. Additional Contribution to the Debate
The Disagreements
4. New Additional Data
4.1. With Re-Interpretation of the Previous Published Papers
4.2. Adding New Thoughts with New Data
- Within the lower Pliocene shelf deposits, in the Zakynthos town, a slump horizon was recognized (Figure 7a,b), just west of the Kalamaki back-thrust fault, showing the activity of the thrust during lower Pliocene sedimentation and the so on produced instability of the basin floor. It is obvious that during the lower Pliocene sedimentation, pre-existing deposits were slumped within the Kalamaki foreland from the wedge top of the Kalamaki thrust fault.
- In the Panagoula section, the contact between the Miocene and Pliocene is characterized by the absence of Messinian evaporites, and this conduct is an unconformity (Figure 7c). The facts of the Messinian evaporites’ absence and the unconformity boundary, although it is in places with a fault-controlled contact (Figure 7d), could suggest either the erosion of the Messinian pre-existing evaporites and/or that these Messinian evaporites never deposited. The unconformity between Pliocene and Miocene deposits could indicate a shifting of the basin floor, before the sedimentation of the lower Pliocene, probably due to Kalamaki thrust activity. Due to the thrust fault activity, additional faults were created influencing the depositional conditions.
- c.
- The Kalamaki section, specifically the middle part, is organized into six cycles that contain evaporites at the base and mudstone at the top (Figure 5b). The detailed measurements of bedding planes showed that bed directions indicate three blocks that display different dip directions but the same angle of bedding (74/60, 65/55, 88/55) (Figure 5b). In the same middle part of the Kalamaki section, a deformation structure (slump) was recognized at the top of the thin-bedded mudstone (Figure 8a). The folding is tight at the one edge but laterally diminishes (Figure 8c). Sedimentary structures similar to load casts occur at the lower bed of evaporites (Figure 8b). Evaporites are composed of cycles with a normally graded, fining upward trend (Figure 8d and Figure 9a,b,d). Amalgamation surfaces exist in the Ta Bouma subdivisions (Figure 9a). Water escape structures, associated with high sedimentation rates, occur in this middle part of the evaporites (Figure 9c).
- d.
- In this Kalamaki section and in the eastern side, Lago Mare and Trubi limestones rest unconformably over the middle evaporitic part, but in some places this contact seems fault-controlled (Figure 10c). This type of contact indicates that tectonic activity controlled the accumulation of these deposits. Mudstone beds that occur at the top of the Trubi limestones rest unconformably over the Trubi limestones (Figure 10a). The mudstone beds underneath the Lago Mare formation contain several slump horizons (Figure 10d), suggesting slope instability during the sedimentation. Trubi formation is cross-cut by normal faults that are directed parallel to the coast (Figure 10b). These faults are probably responsible for the outcrop of the Kalamaki section, which rests on the footwall of these normal faults.
5. Discussion—Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zelilidis, A.; Maravelis, A.G. Introduction to the thematic issue: Adriatic and Ionian Seas: Proven petroleum systems and future prospects. J. Pet. Geol. 2015, 38, 247–253. [Google Scholar] [CrossRef]
- Zelilidis, A.; Maravelis, A.G.; Tserolas, P.; Konstantopoulos, P.A. An overview of the petroleum systems in the Ionian zone, onshore NW Greece and Albania. J. Pet. Geol. 2015, 38, 331–348. [Google Scholar] [CrossRef]
- De Graciansky, P.; De Dardeau, G.; Lemoine, M.; Tricart, P. The inverted margin of the French Alps. In Inversion Tectonics; Cooper, M.A., Williams, G.D., Eds.; Geological Society of London Special Publications: London, UK, 1989; Volume 44, pp. 105–122. [Google Scholar]
- Doutsos, T.; Koukouvelas, I.; Xypolias, P. A new orogenic model for the External Hellenides. In Tectonic Evolution of the Eastern Mediterranean Regions; Robertson, A.H.F., Mountrakis, D., Brun, J.-P., Eds.; Geological Society of London Special Publications: London, UK, 2006; Volume 260, pp. 507–520. [Google Scholar]
- Kokkalas, S.; Kamberis, E.; Xypolias, P.; Sotiropoulos, S.; Koukouvelas, I. Coexistence of thin- and thick-skinned tectonics in Zakynthos area (western Greece): Insights from seismic sections and regional seismicity. Tectonophysics 2013, 598, 73–84. [Google Scholar] [CrossRef]
- Avramidis, P.; Zelilidis, A. The nature of deep-marine sedimentation and palaeocurrent directions as evidence of Pindos foreland basin fill conditions. Episodes 2001, 24, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Underhill, J.R. Late Cenozoic deformation of the Hellenide foreland, Western Greece. Geol. Soc. Am. Bull. 1989, 101, 613–634. [Google Scholar] [CrossRef]
- Maravelis, A.; Makrodimitras, G.; Zelilidis, A. Hydrocarbon prospectivity in Western Greece. Oil Gas Eur. J. 2012, 38, 84–89. [Google Scholar]
- Maravelis, A.; Makrodimitras, G.; Pasadakis, N.; Zelilidis, A. Stratigraphic evolution and source rock potential of a Lower Oligocene to Lower-Middle Miocene continental slope system, Hellenic fold and thrust belt, Ionian Sea, northwest Greece. Geol. Mag. 2014, 151, 394–413. [Google Scholar] [CrossRef]
- Zelilidis, A.; Papatheodorou, G.; Maravelis, A.; Christodoulou, D.; Tserolas, P.; Fakiris, E.; Dimas, X.; Georgiou, N.; Ferentinos, G. Interplay of thrust, back-thrust, strike-slip and salt tectonics in a Fold and Thrust Belt system: An example from Zakynthos Island, Greece. Int. J. Earth Sci. 2016, 105, 2111–2132. [Google Scholar] [CrossRef]
- Bourli, N.; Iliopoulos, G.; Zelilidis, A. Reassessing Depositional Conditions of the Pre-Apulian Zone Based on Synsedimentary Deformation Structures during Upper Paleocene to Lower Miocene Carbonate Sedimentation, From Paxoi and Anti-Paxoi islands, Northwestern end of Greece. Minerals 2022, 12, 201. [Google Scholar] [CrossRef]
- CIESM (Commission Internationale pour l’Exploration Scientifi que de la mer Méditerranée). The Messinian salinity crisis from mega-deposits to microbiology. In A consensus Report: CIESM Workshop Monographs; Briand, F., Ed.; CIESM Workshop Monographs: Menton, France, 2008; Volume 33, 168p. [Google Scholar]
- Iadanza, A.; Sampalmieri, G.; Cipollari, P.; Cosentino, D.; Mola, M. Hydrocarbon-seep Scenarios in the Western Mediterranean Margin during the Messinian Salinity Crisis: Onland Case Studies from the Italian Peninsula. AAPG Eur. Reg. Conf. Exhib. Barc. Sp 2013. Search and Discovery Article 41176. [Google Scholar]
- Manzi, V.; Gennari, R.; Hilgen, F.; Krijgsman, W.; Lugli, S.; Roveri, M.; Sierro, F.J. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 2013, 25, 315–322. [Google Scholar] [CrossRef]
- Roveri, M.; Bertini, A.; Cosentino, D.; Di Stefano, A.; Gennari, R.; Gliozzi, E.; Grossi, F.; Iaccarino, S.M.; Lugli, S.; Manzi, V.; et al. A high-resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy 2008, 5, 323–342. [Google Scholar]
- Lugli, S.; Gennari, R.; Gvirtzman, Z.; Manzi, V.; Roveri, M.; Schreiber, C. Evidence of clastic evaporites in the canyons of the Levant Basin (Israel): Implications for the Messinian salinity crisis. J. Sediment. Res. 2013, 83, 942–954. [Google Scholar] [CrossRef] [Green Version]
- Kontopoulos, N.; Zelilidis, A.; Piper, D.J.W.; Mudie, P.J. Messinian evaporites in Zakynthos, Greece. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 129, 361–367. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Clift, P.D.; Degnan, P.J.; Jones, G. Palaeogeographic and palaeotectonic evolution of the eastern Mediterranean Neotethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 87, 289–343. [Google Scholar] [CrossRef]
- Papanikolaou, D. Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 2009, 108, 262–280. [Google Scholar] [CrossRef]
- BP Co. Ltd. The Geological Results of Petroleum Exploration in Western Greece. Inst. Geol. Subsurf. Res. 1971, 10, 1971. [Google Scholar]
- Jenkins, D.A.L. Structural development of western Greece. AAPG Bull. 1972, 56, 128–149. [Google Scholar]
- Kamberis, E.; Marnelis, F.; Loucoyannakis, M.; Maltezou, F.; Hirn, A.; Group Streamers. Structure and deformation of the External Hellenides based on seismic data from offshore western Greece. In Oil and Gas in Alpidic Thrust Belts and Basins of Central and Eastern Europe; Wessely, G., Liebl, W., Eds.; EAGE Special Publication: Amsterdam, The Netherlands, 1996; pp. 207–214. [Google Scholar]
- Kokinou, E.; Kamberis, E.; Vafidis, A.; Monopolis, D.; Ananiadis, G.; Zelilidis, A. Deep seismic reflection data from offshore western Greece: A new crustal model for the Ionian Sea. J. Pet. Geol. 2005, 28, 185–202. [Google Scholar] [CrossRef]
- Mpotziolis, C.; Kostopoulou, S.; Triantaphyllou, M.; Zelilidis, A. Depositional environments and hydrocarbon potential of the Miocene deposits of Zakynthos Island. Bull. Geol. Soc. Greece 2013, XLVII, 2101–2110. [Google Scholar] [CrossRef] [Green Version]
- Maravelis, A.; Koukounya, A.; Tserolas, P.; Pasadakis, N.; Zelilidis, A. Geochemistry of Upper Miocene-Lower Pliocene source rocks in the Hellenic fold and thrust belt, Zakynthos Island, Ionian Sea, western Greece. Mar. Pet. Geol. 2015, 66, 217–230. [Google Scholar] [CrossRef]
- Braune, K.; Heimann, K.O. Miocene evaporites on the Ionian Islands. Bull. Geol. Soc. Greece 1973, 10, 25–30. [Google Scholar]
- Zelilidis, A.; Kontopoulos, N.; Avramidis, P.; Piper, D.J.W. Tectonic and sedimentological evolution of the Pliocene-Quaternary basins of Zakynthos Island, Greece: Case study of the transitions from compressional to extensional tectonics. Basin Res. 1998, 10, 393–408. [Google Scholar] [CrossRef]
- Karakitsios, V.; Roveri, M.; Lugli, S.; Manzi, V.; Gennari, R.; Antonarakou, A.; Triantaphyllou, M.; Agiadi, K.; Kontakiotis, G.; Kafousia, N.; et al. A record of the Messinian salinity crisis in the eastern Ionian tectonically active domain (Greece, eastern Mediterranean). Basin Res. 2017, 29, 203–233. [Google Scholar] [CrossRef]
- Kontakiotis, G.; Karakitsios, V.; Mortyn, P.G.; Antonarakou, A.; Drinia, H.; Anastasakis, G.; Agiadi, K.; Kafousia, N.; De Rafelis, M. New insights into the early Pliocene hydrographic dynamics and their relationship to the climatic evolution of the Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 459, 348–364. [Google Scholar] [CrossRef]
- Underhill, J.R. Triassic evaporites and Plio-Quarternary diapirism in Western Greece. J. Geol. Soc. Lond. 1998, 145, 269–282. [Google Scholar] [CrossRef]
- Duermeijer, C.E.; Krijgsman, W.; Langereis, C.G.; Meulenkamp, J.E.; Triantafyllou, M.V.; Zachariasse, W.J. A late Pleistocene clockwise rotation phase of Zakynthos (Greece) and implications for the evolution of the western Aegian arc. Earth Planet. Sci. Lett. 1999, 173, 315–331. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelilidis, A.; Bourli, N.; Andriopoulos, K.; Georgoulas, E.; Peridis, S.; Asimakopoulos, D.; Maravelis, A.G. Unraveling the Origin of the Messinian? Evaporites in Zakynthos Island, Ionian Sea: Implications for the Sealing Capacity in the Mediterranean Sea. J. Mar. Sci. Eng. 2023, 11, 271. https://doi.org/10.3390/jmse11020271
Zelilidis A, Bourli N, Andriopoulos K, Georgoulas E, Peridis S, Asimakopoulos D, Maravelis AG. Unraveling the Origin of the Messinian? Evaporites in Zakynthos Island, Ionian Sea: Implications for the Sealing Capacity in the Mediterranean Sea. Journal of Marine Science and Engineering. 2023; 11(2):271. https://doi.org/10.3390/jmse11020271
Chicago/Turabian StyleZelilidis, Avraam, Nicolina Bourli, Konstantinos Andriopoulos, Eleftherios Georgoulas, Savvas Peridis, Dimitrios Asimakopoulos, and Angelos G. Maravelis. 2023. "Unraveling the Origin of the Messinian? Evaporites in Zakynthos Island, Ionian Sea: Implications for the Sealing Capacity in the Mediterranean Sea" Journal of Marine Science and Engineering 11, no. 2: 271. https://doi.org/10.3390/jmse11020271
APA StyleZelilidis, A., Bourli, N., Andriopoulos, K., Georgoulas, E., Peridis, S., Asimakopoulos, D., & Maravelis, A. G. (2023). Unraveling the Origin of the Messinian? Evaporites in Zakynthos Island, Ionian Sea: Implications for the Sealing Capacity in the Mediterranean Sea. Journal of Marine Science and Engineering, 11(2), 271. https://doi.org/10.3390/jmse11020271