Similarity Study of Electromagnetic and Underwater Acoustic Scattering by Three-Dimensional Targets in Unbounded Space
Abstract
:1. Introduction
2. Similarity of EM Scattering by Conductors and Acoustic Scattering by Hard Targets
2.1. EM Scattering of Conductors
2.2. Acoustic Scattering of Hard/Soft-Targets
2.3. Similarity Relationship and Conditions
3. Analysis of EM Scattering of 3D Dielectric Targets and Acoustic Scattering of Elastomeric Targets
3.1. EM Scattering of 3D Dielectric Targets
3.2. Acoustic Scattering of Elastics
3.3. Similarity Relationship and Conditions
4. Verification and Discussion
4.1. Similarity Verification of EM Scattering by Conductors and Acoustic Scattering by Soft/Hard Targets
4.2. Similarity Verification of the EM Scattering by Dielectrics and Acoustic Scattering by Elastics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazak, M.; Koshel, K.; Pavel, P. Generalized Form of the Invariant Imbedding Method and Its Application to the Study of Back-Scattering in Shallow-Water Acoustics. J. Mar. Sci. Eng. 2021, 9, 1033. [Google Scholar] [CrossRef]
- Zhao, H.; Lai, Y.; Wang, Y.; Zhou, H. High-Frequency Radar Cross Section of Ocean Surface for an FMICW Source. J. Mar. Sci. Eng. 2021, 9, 427. [Google Scholar] [CrossRef]
- Wang, B.; Wang, W.; Fan, J.; Zhao, K.; Zhou, F.; Tan, L. Modeling of bistatic scattering from an underwater non-penetrable target using a Kirchhoff approximation method. Def. Tech. 2022, 18, 1097–1106. [Google Scholar] [CrossRef]
- Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications; Springer: London, UK, 2002; pp. 54–60. [Google Scholar]
- Dukata, A.; Kapelewski, J. On electromagnetic-acoustic analogies in energetic relations for waves interacting with material surfaces. Acta Phys. Pol. A 2008, 114, A69–A73. [Google Scholar] [CrossRef]
- Carcione, M.; Cavallini, F. On the acoustic-electromagnetic analogy. Wave Motion 1995, 21, 149–162. [Google Scholar] [CrossRef]
- Snakowska, A. Acousto-electromagnetic analogies in diffraction phenomena occurring in the semi-infinite cylindrical waveguide. Acta Phys.-Pol.-Ser. Gen. Phys. 2009, 116, 410. [Google Scholar] [CrossRef]
- Carcione, M.; Robinson, A. On the acoustic-electromagnetic analogy for the reflection-refraction problem. Stud. Geophys. Geod. 2002, 46, 321–346. [Google Scholar] [CrossRef]
- Sarkissan, A. Method of superposition applied to scattering from a target in shallow water. J. Acoust. Soc. Am. 1994, 95, 2340–2345. [Google Scholar] [CrossRef]
- Kuz’kin, M.; Grigor’ev, A. Field Focusing Control in Multimode Plane-Layered Waveguides. Acoust. Phys. 2005, 51, 292–299. [Google Scholar]
- Kuz’kin, M. Sound Diffraction by an Inhomogeneity in an Oceanic Waveguide. Acoust. Phys. 2002, 48, 69–75. [Google Scholar] [CrossRef]
- Huang, L.-F.; Liu, C.-G.; Wang, H.-G.; Zhu, Q.-L.; Zhang, L.-J.; Han, J.; Zhang, Y.-S.; Wang, Q.-N. Experimental Analysis of Atmospheric Ducts and Navigation Radar Over-the-Horizon Detection. Remote Sens. 2022, 14, 2588. [Google Scholar] [CrossRef]
- Ji, H.; Yin, B.; Zhang, J.; Zhang, Y.; Li, Q.; Hou, C. Multiscale Decomposition Prediction of Propagation Loss for EM Waves in Marine Evaporation Duct Using Deep Learning. J. Mar. Sci. Eng. 2023, 11, 51. [Google Scholar] [CrossRef]
- Ren, F.; Gao, H.; Yang, L. Distributed Multistatic Sky-Wave Over-The-Horizon Radar Based on the Doppler Frequency for Marine Target Positioning. Electronics 2021, 10, 1472. [Google Scholar] [CrossRef]
- Kristensson, G.; Waterman, C. The T matrix for acoustic and electromagnetic scattering by circular disks. J. Acoust. Soc. Am. 1982, 72, 1612–1625. [Google Scholar] [CrossRef]
- Umaporn, N. Topics in Electromagnetic, Acoustic, and Potential Scattering Theory. Ph.D. Thesis, OLD Dominion University, Norfolk, VA, USA, 2013. Volume 8. [Google Scholar]
- Athanasiadis, C.; Martin, A.; Spyropoulos, A.; Stratis, G. Scattering relations for point sources: Acoustic and electromagnetic waves. J. Math. Phys. 2002, 43, 5683–5697. [Google Scholar] [CrossRef] [Green Version]
- Colton, L.; Kress, R.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed.; Springer: Berlin, Germany, 2013; pp. 2–15. [Google Scholar]
- Bowman, J.; Thomas, S.; Piergiorgio, U. Electromagnetic and Acoustic Scattering by Simple Shapes; University of California: Los Angeles, CA, USA, 1987; pp. 20–32. [Google Scholar]
- Gao, F. Multi-Wave EM-Acoustic Methods. In Multi-Wave Electromagnetic-Acoustic Sensing and Imaging; Springer: Singapore, 2017; pp. 9–93. [Google Scholar]
- Lee, H.; Burnside, D. Compact range reflector edge treatment impact on antenna and scattering measurements. IEEE Trans. Antennas Propag. 1997, 45, 57–65. [Google Scholar]
- Pimenta, C.; Wolf, R.; Cavalieri, G. A fast numerical framework to compute acoustic scattering by poroelastic plates of arbitrary geometry. J. Comput. Phys. 2018, 373, 763–783. [Google Scholar] [CrossRef]
- Keller, B. Geometrical theory of diffraction. Josa 1962, 52, 115–130. [Google Scholar] [CrossRef]
- Rousseau, R.; Pathak, H. Time-domain uniform geometrical theory of diffraction for a curved wedge. IEEE Trans. Antennas Prop. 1995, 43, 1375–1382. [Google Scholar] [CrossRef]
- Marston, L. GTD for backscattering from elastic spheres and cylinders in water and the coupling of surface elastic waves with the acoustic field. J. Acoust. Soc. Am. 1988, 83, 25–37. [Google Scholar] [CrossRef]
- Esfahlani, S.; Seyyed, H. Electromagnetic Inspired Acoustic Metamaterials. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland, 2017. [Google Scholar]
- Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing; Academic Press: Cambridge, MA, USA, 2010; pp. 32–41. [Google Scholar]
- Xi, Z.; Lu, J.; Zhang, M.; Yua, B. Study on underwater acoustic simulation measurement of radar HRRP for ship targets. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011. [Google Scholar]
- Feng, Y.; Ge, J.; Wan, F. The derivation of scaling relationship between acoustic and electromagnetic scattering by spheres. AIP Adv. 2013, 3, 112130. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Ge, J.; Wang, J. Scaling relationships between acoustic and electromagnetic scattering by an infinite cylinder. AIP Adv. 2019, 9, 125315. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, A.; Ding, H. Scattering of Electromagnetic Waves: Theories and Applications; John Wiley and Sons: New York, NY, USA, 2004; pp. 54–66. [Google Scholar]
- Nedelec, C. Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, 3rd ed.; Springer: New York, NY, USA, 2001; pp. 10–16. [Google Scholar]
- Gutierrez-Meana, J.; Martinez-Lorenzo, J.; Las-Heras, F. High frequency techniques: The physical optics approximation and the modified equivalent current approximation (MECA). In Electromagnetic Waves Propagation in Complex Matter; Scitus Academics LLC: Wilmington, DE, USA, 2011; pp. 207–230. [Google Scholar]
- Yang, A. Acoustic scattering by a hard or soft body across a wide frequency range by the Helmholtz integral equation method. J. Acoust. Soc. Am. 1997, 102, 2511–2520. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Lin, W. Calculation of bistatic scattering from underwater target with physical acoustic method. Procedia Eng. 2011, 15, 2561–2565. [Google Scholar] [CrossRef] [Green Version]
- Yla-Oijala, P.; Kiminki, P.; Cools, K.; Andriulli, P.; Jarvenpaa, S. Stable discretization of combined source integral equation for scattering by dielectric objects. IEEE Trans. Antennas Prop. 2012, 60, 2575–2578. [Google Scholar] [CrossRef]
- De, S.; Diego, G.; Blanco, G.; Lozano, P.; Catedra, F. Method based on physical optics for the computation of the radar cross section including diffraction and double effects of metallic and absorbing bodies modeled with parametric surfaces. IEEE Trans. Antennas Propag. 2004, 52, 3295–3303. [Google Scholar]
- Belibassakis, K.; Prospathopoulos, J.; Malefaki, I. Scattering and directionality effects of noise generation from flapping thrusters used for propulsion of small ocean vehicles. J. Mar. Sci. Eng. 2022, 10, 1192. [Google Scholar] [CrossRef]
- Nadimi, N.; Javidan, R.; Layeghi, K. An Efficient Acoustic Scattering Model Based on Target Surface Statistical Descriptors for Synthetic Aperture Sonar Systems. J. Mar. Sci. Appl. 2020, 19, 494–507. [Google Scholar] [CrossRef]
- He, C.; Zheng, Y.; Xiang, X.; Ma, Y. Kirchhoff approximations for the forward-scattering target strength of underwater objects. J. Theor. Comput. Acoust. 2020, 28, 1950008. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, W.; Wu, M.; Jin, Q. The Efficient High Frequency Solver for Calculating the Scattered Fields from the Electrically Large Scatterers. In Proceedings of the 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018. [Google Scholar]
- Chew, W.C. Waves and Fields in Inhomogenous Media; John Wiley and Sons: New York, NY, USA, 1999; pp. 25–33. [Google Scholar]
- Lu, B.; Darmon, M.; Potel, C.; Zernov, V. Models Comparison for the scattering of an acoustic wave on immersed targets. J. Phys. Conf. Ser. 2012, 353, 012009. [Google Scholar] [CrossRef] [Green Version]
- Schneider, G.; Berg, R.; Gilroy, L.; Karasalo, I.; MacGillivray, I.; Morshuizen, T.; Volker, A. Acoustic scattering by a submarine: Results from a benchmark target strength simulation workshop. In Proceedings of the ICSV10, Stockholm, Sweden, 6–9 July 2003; pp. 2475–2482. [Google Scholar]
- Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications; John Wiley & Sons: New York, NY, USA, 2017; pp. 44–45. [Google Scholar]
- Wu, G.; Liu, B.; Han, L. Normalized Radar Scattering Section Simulation and Numerical Calculation of Freak Wave. J. Mar. Sci. Eng. 2022, 10, 1631. [Google Scholar] [CrossRef]
- Yang, F. Progress in Applied Mathematical Modeling; Nova Publishers: Hauppauge, NY, USA, 2008; pp. 223–260. [Google Scholar]
Targets | 1 | (meas.) | |||
---|---|---|---|---|---|
Plate | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 |
Aircraft | 0.93 | 0.98 | 0.99 | 0.99 | 0.91 |
Submarine | 0.97 | 0.97 | 0.96 | 0.97 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lin, H.; Guo, H.; Zhang, Q.; Ge, J. Similarity Study of Electromagnetic and Underwater Acoustic Scattering by Three-Dimensional Targets in Unbounded Space. J. Mar. Sci. Eng. 2023, 11, 440. https://doi.org/10.3390/jmse11020440
Wang J, Lin H, Guo H, Zhang Q, Ge J. Similarity Study of Electromagnetic and Underwater Acoustic Scattering by Three-Dimensional Targets in Unbounded Space. Journal of Marine Science and Engineering. 2023; 11(2):440. https://doi.org/10.3390/jmse11020440
Chicago/Turabian StyleWang, Jie, Hai Lin, Huaihai Guo, Qi Zhang, and Junxiang Ge. 2023. "Similarity Study of Electromagnetic and Underwater Acoustic Scattering by Three-Dimensional Targets in Unbounded Space" Journal of Marine Science and Engineering 11, no. 2: 440. https://doi.org/10.3390/jmse11020440
APA StyleWang, J., Lin, H., Guo, H., Zhang, Q., & Ge, J. (2023). Similarity Study of Electromagnetic and Underwater Acoustic Scattering by Three-Dimensional Targets in Unbounded Space. Journal of Marine Science and Engineering, 11(2), 440. https://doi.org/10.3390/jmse11020440