Atmosphere-Ocean Processes Governing Inflow to the Northern Caribbean Sea
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. EOF Analysis of Currents
3.2. Regression/Composites with AMW Inflow
3.3. Characteristics of Anegada inflow
3.4. Ocean Rossby Waves
3.5. Anegada Inflow Case
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Curry, R.G.; McCartney, M.S. Ocean Gyre Circulation Changes Associated with the North Atlantic Oscillation*. J. Phys. Oceanogr. 2001, 31, 3374–3400. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Visbeck, M.; Busalacchi, A.; Clarke, R.A.; Delworth, T.; Dickson, R.R.; Johns, W.E.; Koltermann, K.P.; Kushnir, Y.; Marshall, D.; et al. Atlantic Climate Variability and Predictability: A CLIVAR Perspective. J. Clim. 2006, 19, 5100–5121. [Google Scholar] [CrossRef] [Green Version]
- Ba, J.S.; Keenlyside, N.S.; Latif, M.; Park, W.; Ding, H.; Lohmann, K.; Mignot, J.; Menary, M.; Otterå, O.H.; Wouters, B.; et al. A multi-model comparison of Atlantic multidecadal variability. Clim. Dyn. 2014, 43, 2333–2348. [Google Scholar] [CrossRef]
- Buckley, M.W.; Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev. Geophys. 2016, 54, 5–63. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Van Loon, H. Decadal variations in climate associated with the north atlantic oscillation. Clim. Chang. 1997, 36, 301–326. [Google Scholar] [CrossRef]
- Visbeck, M.; Cullen, H.; Krahmann, G.; Naik, N. An ocean model’s response to North Atlantic Oscillation–like wind forcing. Geophys. Res. Lett. 1998, 25, 4521–4524. [Google Scholar] [CrossRef] [Green Version]
- Wang, C. ENSO, Atlantic climate variability, and the Walker and Hadley circulations. In The Hadley Circulation: Past, Present and Future; Diaz, H.F., Bradley, R.S., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 173–202. [Google Scholar]
- Yeshanew, A.; Jury, M.R. North African climate variability. Part 2: Tropical circulation systems. Theor. Appl. Clim. 2007, 89, 37–49. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Yu, J.-Y.; Hu, X.; Dong, W.; He, S. El Niño-Southern Oscillation and its impact in the changing climate. Natl. Sci. Rev. 2018, 5, 840–857. [Google Scholar] [CrossRef] [Green Version]
- Garzoli, S.; Ffield, A.; Yao, Q. NBC retroflection and rings. In Interhemispheric Water Exchanges in the Atlantic Ocean; Elsevier Oceanogr Series; Elsevier: Amsterdam, The Netherlands, 2003; Volume 68, pp. 357–374. [Google Scholar]
- Garzoli, S.; Ffield, A.E.; Johns, W.; Yao, Q. North Brazil Current retroflection and transports. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Johns, W.E.; Lee, T.N.; Schott, F.A.; Zantopp, R.J.; Evans, R.H. The North Brazil Current retroflection: Seasonal structure and eddy variability. J. Geophys. Res. 1990, 95, 22103–22120. [Google Scholar] [CrossRef]
- Richardson, P.L.; Hufford, G.E.; Limeburner, R.; Brown, W.S. North Brazil Current retroflection eddies. J. Geophys. Res. 1994, 99, 5081–5093. [Google Scholar] [CrossRef]
- Didden, N.; Schott, F. Eddies in the North Brazil Current retroflection region observed by Geosat altimetry. J. Geophys. Res. 1993, 98, 20121–20131. [Google Scholar] [CrossRef] [Green Version]
- Fratantoni, D.M.; Johns, W.E.; Townsend, T.L. Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation. J. Geophys. Res. 1995, 100, 10633–10654. [Google Scholar] [CrossRef]
- Goni, G.; Johns, W.E. A census of North Brazil Current rings observed from T/P altimetry: 1992–1998. Geophys. Res. Lett. 2001, 28, 1–4. [Google Scholar] [CrossRef]
- Mertens, C.; Rhein, M.; Walter, M.; Kirchner, K. Modulation of the inflow into the Caribbean Sea by North Brazil Current rings. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 1057–1076. [Google Scholar] [CrossRef]
- Niiler, P.P.; Richardson, W.S. Seasonal variability of the Florida Current. J. Mar. Res. 1973, 31, 144–167. [Google Scholar]
- Schott, F.A.; Lee, T.N.; Zantopp, R. Variability of Structure and Transport of the Florida Current in the Period Range of Days to Seasonal. J. Phys. Oceanogr. 1988, 18, 1209–1230. [Google Scholar] [CrossRef]
- Stalcup, M.C.; Metcalf, W.G. Current measurements in the passages of the Lesser Antilles. J. Geophys. Res. 1972, 77, 1032–1049. [Google Scholar] [CrossRef]
- Wilson, W.D.; Johns, W.E. Velocity structure and transport in the Windward Islands Passages. Deep. Sea Res. Part I Oceanogr. Res. 1997, 44, 487–520. [Google Scholar] [CrossRef]
- Johns, W.E.; Wilson, W.D.; Molinari, R.L. Direct observations of velocity and transport in the passages between the Intra-Americas Sea and the Atlantic Ocean, 1984–1996. J. Geophys. Res. 1999, 104, 25805–25820. [Google Scholar] [CrossRef] [Green Version]
- Leetmaa, A.; Niiler, P.P.; Stommel, H. Does the Sverdrup relation account for the mid-Atlantic circulation? J. Mar. Res. 1977, 35, 1–10. [Google Scholar]
- Schmitz, W.J.; Richardson, P.L. On the sources of the Florida Current. Deep. Sea Res. 1991, 38, 379–409. [Google Scholar] [CrossRef]
- Roemmich, D. The Balance of Geostrophic and Ekman Transports in the Tropical Atlantic Ocean. J. Phys. Oceanogr. 1983, 13, 1534–1539. [Google Scholar] [CrossRef]
- Gordon, A.L. Interocean exchange of thermocline water. J. Geophys. Res. 1986, 91, 5037–5046. [Google Scholar] [CrossRef] [Green Version]
- Rintoul, S. South Atlantic interbasin exchange. J. Geophys. Res. 1991, 96, 2675–2692. [Google Scholar] [CrossRef]
- Gordon, A.L.; Weiss, R.F.; Smethie, W.M.; Warner, M.J. Thermocline and intermediate water communication between the South Atlantic and Indian oceans. J. Geophys. Res. 1992, 97, 27223–27240. [Google Scholar] [CrossRef]
- Schmitz, W.J.; McCartney, M.S. On the North Atlantic Circulation. Rev. Geophys. 1993, 31, 29–49. [Google Scholar] [CrossRef]
- Schott, F.A.; Fischer, J.; Reppin, J.; Send, U. On mean and seasonal currents and transports at the western boundary of the equatorial Atlantic. J. Geophys. Res. 1993, 98, 14353–14368. [Google Scholar] [CrossRef] [Green Version]
- Johns, W.E.; Lee, T.N.; Beardsley, R.; Candela, J.; Castro, B. Annual cycle and variability of the North Brazil Current. J. Phys. Oceanogr. 1998, 28, 103–128. [Google Scholar] [CrossRef]
- Johns, W.E.; Townsend, T.L.; Fratantoni, D.M.; Wilson, W.D. On the Atlantic inflow to the Caribbean Sea. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 211–243. [Google Scholar] [CrossRef]
- Jury, M.R. Slowing of Caribbean through-flow. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2020, 2, 168. [Google Scholar] [CrossRef]
- Stalcup, M.C.; Metcalf, W.G.; Johnson, R.G. Deep Caribbean inflow through the Anegada Passage. J. Mar. Res. 1975, 33, 15–35. [Google Scholar]
- Sturges, W. Mixing of renewal water flowing into the Caribbean Sea. J. Mar. Res. 1975, 33, 117–130. [Google Scholar]
- Fratantoni, D.M.; Zantopp, R.J.; Johns, W.E.; Miller, J.L. Updated bathymetry of the Anegada–Jungfern Passage complex and implications for Atlantic inflow to the abyssal Caribbean Sea. J. Mar. Res. 1997, 55, 847–860. [Google Scholar] [CrossRef]
- Roemmich, D. Circulation of the Caribbean Sea: A well resolved inverse problem. J. Geophys. Res. 1981, 86, 7993–8005. [Google Scholar] [CrossRef]
- Wunsch, C.; Grant, B. Towards the general circulation of the North Atlantic ocean. Prog. Oceanogr. 1982, 11, 1–59. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.A.; Chen, L. SODA3: A New Ocean Climate Reanalysis. J. Clim. 2018, 31, 6967–6983. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-era retrospective analysis for research and applications, version 2 (MERRA2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Lee, H.-T. Climate Algorithm Theoretical Basis Document: Outgoing Longwave Radiation (OLR); NOAA CDR Program, CDRP-ATBD-0526; NOAA: Washington, DC, USA, 2014; p. 46. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Legeais, J.F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA climate change initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef] [Green Version]
- Chassignet, E.P.; Hurlburt, H.E.; Metzger, E.J.; Smedstad, O.M.; Cummings, J.A.; Halliwell, G.R.; Bleck, R.; Baraille, R.; Wallcraft, A.J.; Lozano, C.; et al. US GODAE: Global ocean prediction with the Hybrid coordinate ocean model (HYCOM). Oceanography 2009, 22, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Doos, K. Influence of the Rossby waves on the seasonal cycle in the tropical Atlantic. J. Geophys. Res. 1999, 104, 29591–29598. [Google Scholar] [CrossRef]
- Polito, P.S.; Liu, W.T. Global characterization of Rossby waves at several spectral bands. J. Geophys. Res. 2003, 108, 3018. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.C.; Ivanov, L.M.; Melnichenko, O.V.; Wells, N.C. On long baroclinic Rossby waves in the tropical North Atlantic observed from profiling floats. J. Geophys. Res. 2007, 112, C05032. [Google Scholar] [CrossRef]
- Jouanno, J.; Sheinbaum, J.; Barnier, B.; Molines, J.-M. The mesoscale variability in the Caribbean Sea. Part II: Energy sources. Ocean Modell. 2009, 26, 226–239. [Google Scholar]
- Jury, M.R. Eastern Venezuela coastal upwelling in context of regional weather and climate variability. Reg. Stud. Mar. Sci. 2018, 18, 219–228. [Google Scholar] [CrossRef]
- Lau, K.-M.; Wu, H.-T.; Bony, S. The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J. Clim. 1997, 10, 381–392. [Google Scholar] [CrossRef]
- Jury, M.R. Zonal gradients in the lower atmosphere and upper ocean across Puerto Rico and the windward Antilles in mid-summer 2012. J. Appl. Meteorol. Climatol. 2013, 53, 731–741. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z. North Atlantic Rossby wave-breaking during the hurricane season: Association with tropical and extra-tropical variability. J. Clim. 2019, 32, 3777–3801. [Google Scholar] [CrossRef]
Acronym | Name, Version | Horizontal Resolution | Temporal Details | Web-Source |
---|---|---|---|---|
ERA5 | European Centre (Atmos.) Reanalysis v5 | 25 km | 1979–2019 daily | Climate Explorer KNMIUniv Hawaii APDRC |
EU-marine | European Union satellite Altimetry reanalysis | 25 km | 1992–2019 daily | Climate Explorer KNMI |
GHR SST | Global High-Res. SST via UKMO v1 (IR + MW) | 1 km | 2008–2019 daily | Univ Hawaii APDRC |
HYCOM3 | Hybrid Coord. Ocean Model v3 reanalysis w/NCODA | 10 km | 2000–2019 daily | Univ Hawaii APDRC |
NOAA | Nat. Ocean & Atmos. Admin. SST, netOLR | 25 km | 1980–2019 daily | IRI Climate Library |
SODA3 | Simple Ocean Data Assim. V3 reanalysis w/MERRA2 | 50 km | 1980–2015 monthly | IRI Climate Library |
(a) | Lowest | Highest | (b) | Inflow | |
---|---|---|---|---|---|
Dec-1992 | −1.98 | Jan-1989 | 1.53 | 11-Feb-2001 | 0.67 |
Jan-1993 | −1.69 | Mar-1989 | 1.55 | 19-Apr-2014 | 0.61 |
Nov-1992 | −1.60 | Sep-2014 | 1.56 | 10-Feb-2001 | 0.61 |
Nov-2005 | −1.32 | Sep-2000 | 1.57 | 31-Dec-2010 | 0.60 |
May-1992 | −1.20 | Feb-1989 | 1.59 | 30-Dec-2010 | 0.60 |
Dec-2006 | −1.04 | Jun-1988 | 1.60 | 12-Feb-2001 | 0.60 |
Apr-1992 | −1.01 | May-2000 | 1.66 | 23-Jul-2003 | 0.59 |
Oct-2005 | −0.98 | Dec-2004 | 1.68 | 21-Apr-2013 | 0.56 |
Jun-1992 | −0.82 | Feb-1988 | 1.69 | 09-Feb-2001 | 0.56 |
Feb-1993 | −0.81 | Aug-2003 | 1.77 | 20-Apr-2013 | 0.55 |
Sep-2005 | −0.74 | Sep-2003 | 1.80 | 22-Jul-2003 | 0.55 |
Oct-1992 | −0.74 | Feb-2000 | 1.81 | 24-Jul-2003 | 0.54 |
Mar-1992 | −0.70 | Apr-2000 | 1.95 | 22-Mar-2011 | 0.54 |
Dec-1989 | −0.70 | May-1988 | 1.95 | 23-Mar-2011 | 0.54 |
Jun-2005 | −0.69 | Mar-2000 | 1.97 | 12-Jan-2015 | 0.54 |
May-2005 | −0.68 | Mar-1988 | 2.19 | 18-Apr-2014 | 0.53 |
Jan-2006 | −0.68 | Apr-1988 | 2.24 | 20-Apr-2014 | 0.53 |
13-Jan-2015 | 0.53 | ||||
17-Mar-2001 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jury, M.R. Atmosphere-Ocean Processes Governing Inflow to the Northern Caribbean Sea. J. Mar. Sci. Eng. 2023, 11, 718. https://doi.org/10.3390/jmse11040718
Jury MR. Atmosphere-Ocean Processes Governing Inflow to the Northern Caribbean Sea. Journal of Marine Science and Engineering. 2023; 11(4):718. https://doi.org/10.3390/jmse11040718
Chicago/Turabian StyleJury, Mark R. 2023. "Atmosphere-Ocean Processes Governing Inflow to the Northern Caribbean Sea" Journal of Marine Science and Engineering 11, no. 4: 718. https://doi.org/10.3390/jmse11040718
APA StyleJury, M. R. (2023). Atmosphere-Ocean Processes Governing Inflow to the Northern Caribbean Sea. Journal of Marine Science and Engineering, 11(4), 718. https://doi.org/10.3390/jmse11040718