Microplastic Accumulation in Catfish and Its Effects on Fish Eggs from Songkhla Lagoon, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Laboratory Analysis
2.2.1. Part of the Observed Microplastic in the Gills, Stomach, and Tissue of Fish
2.2.2. The Observed Microplastic in Fish Eggs
2.3. Microplastic Identification
2.3.1. The Observed Microplastic in the Gills, Stomach, and Tissue of Fish
2.3.2. The Observed Microplastics in Fish Eggs
2.4. Data Analysis
2.5. Contamination Prevention
3. Results
3.1. Abundance of Microplastics in Fish Organs
3.2. Characteristics of Microplastics in Catfish
3.3. Polymer Identification in O. militaris
3.4. Abundance of Microfibers in Fish Eggs
3.4.1. Fish Eggs
3.4.2. Microfibers in Fish Eggs of O. militaris
3.4.3. Polymer Identification in Fish Eggs
4. Discussion
4.1. Microplastics in the Stomach, Tissue, and Gills of Catfish
4.2. Contamination of Microfibers in Fish Eggs
4.3. Polymer Type Found in Fish Organs and Fish Eggs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scientific and Technical Advisory Panel (STAP). Marine Debris as a Global Environmental Problem: Introducing Solutions Based Framework Focused on Plastic. A STAP In-Formation Document; Global Environment Facility: Washington, DC, USA, 2011. [Google Scholar]
- Gordon, M. Eliminating Land-Based Discharges of Marine Debris in California: A Plan of Action from the Plastic Debris Project; California Coastal Commission: San Francisco, CA, USA, 2006.
- Galgani, F.; Fleet, D.; Van Franeker, J.; Katsanevakis, S.; Maes, T.; Mouat, J.; Oosterbaan, L.; Poitou, I.; Hanke, G.; Thompson, R.; et al. Marine Strategy Framework Directive, Task Group 10 Report: Marine Litter. In JRC Scientific and Technical Reports; Zampoukas, N., Ed.; European Commission Joint Research Centre: Ispra, Italy, 2010. [Google Scholar]
- Van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N.; Hardesty, B.D.; Van Franeker, J.A.; Eriksen, M.; Siegel, D.; Galgani, F.; Law, K.L. A global in-ventory of small floating plastic debris. Environ. Res. Lett. 2015, 10, 124006. [Google Scholar] [CrossRef]
- Group of Experts on the Scientific Aspects of Marine Environmental Protection. GESAMP: Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment; GESAMP: London, UK, 2015. [Google Scholar]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; Teh, S.J. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015, 5, 14340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, S.; Van Franeker, J.A. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 2020, 151, 110858. [Google Scholar] [CrossRef]
- Hardesty, B.D.; Good, T.P.; Wilcox, C. Novel methods, new results and science-based solutions to tackle marine debris impacts on wildlife. Ocean. Coast. Manag. 2015, 115, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Gall, S.; Thompson, R. The impact of debris on Marine Life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef]
- Li, J.; Qu, X.; Su, L.; Zhang, W.; Yang, D.; Kolandhasamy, P.; Shi, H. Microplastics in mussels along the coastal waters of China. Environ. Pollut. 2016, 214, 177–184. [Google Scholar] [CrossRef]
- Jabeen, K.; Su, L.; Li, J.; Yang, D.; Tong, C.; Mu, J.; Shi, H. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 2017, 221, 141–149. [Google Scholar] [CrossRef]
- Pozo, K.; Gomez, V.; Torres, M.; Vera, L.; Nuñez, D.; Oyarzún, P.; Klánová, J. Presence and characterization of microplastics in fish of commercial importance from the Biobío Region in central Chile. Mar. Pollut. Bull. 2019, 140, 315–319. [Google Scholar] [CrossRef]
- Cole, M.; Webb, H.; Lindeque, P.K.; Fileman, E.S.; Halsband, C.; Galloway, T.S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 2014, 4, 4528. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A Review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.L.; Hernandez-Milian, G.; O’Brien, J.; Berrow, S.; O’Connor, I.; Officer, R. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The true’s beaked whale Mesoplodon Mirus. Environ. Pollut. 2015, 199, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Nadal, M.; Alomar, C.; Deudero, S. High levels of microplastic ingestion by the semipelagic fish Bogue Boops Boops (L.) around the Balearic Islands. Environ. Pollut. 2016, 214, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Wójcik-Fudalewska, D.; Normant-Saremba, M.; Anastácio, P. Occurrence of plastic debris in the stomach of the invasive crab eriocheir sinensis. Mar. Pollut. Bull. 2016, 113, 306–311. [Google Scholar] [CrossRef]
- Parida, P.K.; Jaiswar, A.K.; Palaniswamy, R.; Kumar, P.; Chakraborty, S.K. Growth and mortality of Osteogeneiosus mili-taris (Linnaeus 1758) from Mumbai waters. Indian J. Fish. 2014, 61, 12–15. [Google Scholar]
- Fagiano, V.; Alomar, C.; Compa, M.; Soto-Navarro, J.; Jordá, G.; Deudero, S. Neustonic microplastics and zooplankton in coastal waters of Cabrera marine protected area (Western Mediterranean Sea). Sci. Total Environ. 2022, 804, 150120. [Google Scholar] [CrossRef]
- Sambolino, A.; Herrera, I.; Álvarez, S.; Rosa, A.; Alves, F.; Canning-Clode, J.; Kaufmann, M. Seasonal variation in micro-plastics and zooplankton abundances and characteristics: The ecological vulnerability of an oceanic island system. Mar. Pollut. Bull. 2022, 181, 113906. [Google Scholar] [CrossRef]
- Botterell, Z.L.; Bergmann, M.; Hildebrandt, N.; Krumpen, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic. Sci. Total Environ. 2022, 831, 154886. [Google Scholar] [CrossRef]
- Zhang, C.; Zuo, Z.; Wang, Q.; Wang, S.; Lv, L.; Zou, J. Size Effects of Microplastics on Embryos and Observation of Toxicity Kinetics in Larvae of Grass Carp (Ctenopharyngodon idella). Toxics 2022, 10, 76. [Google Scholar] [CrossRef]
- Uy, C.A.; Johnson, D.W. Effects of microplastics on the feeding rates of larvae of a coastal fish: Direct consumption, trophic transfer, and effects on growth and survival. Mar. Biol. 2022, 169, 27. [Google Scholar] [CrossRef] [PubMed]
- Chuvanich, S.; Thongnoo, K.; Chevakidagarn, P.; Phongdara, A. Evaluation of Artificial Neural Networks for Electrical Con-ductivity-based and Flow Rate-based Prediction of the Nitrate Nitrogen Concentration in the U-Tapao Canal, Hat Yai, Thailand. Environ. Asia 2017, 10, 15–24. [Google Scholar]
- Gyawali, S.; Techato, K.; Yuangyai, C. Effects of Industrial Waste Disposal on the Surface Water Quality of U-tapao River, Thailand. In Proceedings of the International Conference on Environmental Science Engineering IPCBEE, Bangkok, Thailand, 24 March 2012; Volume 3, pp. 109–113. [Google Scholar]
- Sirinawin, W.; Sompongchaiyakul, P. Nondetrital and total metal distribution in core sediments from the U-Tapao Canal, Songkhla, Thailand. Mar. Chem. 2005, 94, 5–16. [Google Scholar] [CrossRef]
- Foekema, E.M.; De Gruijter, C.; Mergia, M.T.; van Franeker, J.A.; Murk, A.J.; Koelmans, A.A. Plastic in North sea fish. Environ. Sci. Technol. 2013, 47, 8818–8824. [Google Scholar] [CrossRef] [PubMed]
- Dehaut, A.; Cassone, A.L.; Frère, L.; Hermabessiere, L.; Himber, C.; Rinnert, E.; Rivière, G.; Lambert, C.; Soudant, P.; Huvet, A.; et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 2016, 215, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Hermsen, E.; Pompe, R.; Besseling, E.; Koelmans, A.A. Detection of low numbers of microplastics in North Sea fish using strict quality assurance criteria. Mar. Pollut. Bull. 2017, 122, 253–258. [Google Scholar] [CrossRef]
- Kühn, S.; Van Werven, B.; Van Oyen, A.; Meijboom, A.; Rebolledo, E.L.B.; Van Franeker, J.A. The use of potassium hy-droxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Mar. Pollut. Bull. 2017, 115, 86–90. [Google Scholar] [CrossRef]
- Bessa, F.; Barría, P.; Neto, J.M.; Frias, J.P.; Otero, V.; Sobral, P.; Marques, J.C. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 2018, 128, 575–584. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Wang, S.; Sun, D.; Zhou, A.; Xie, S.; Zou, J. Occurrence of Microplastics in the Gastrointestinal Tract and Gills of Fish from Guangdong, South China. J. Mar. Sci. Eng. 2021, 9, 981. [Google Scholar] [CrossRef]
- Güven, O.; Gökdağ, K.; Jovanović, B.; Kıdeyş, A.E. Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut. 2017, 223, 286–294. [Google Scholar] [CrossRef]
- Angsupanich, S.; Somsak, S.; Phrommoon, J. Stomach contents of the catfishes Osteogeneiosus militaris (Linnaeus, 1758) and Arius maculatus (Thunberg, 1792) in the Songkhla lake. Warasan Songkhla Nakharin (Sakha Witthayasat lae Technology). 2005. Available online: https://agris.fao.org/agris-search/search.do?recordID=TH2008001875 (accessed on 25 February 2023).
- Kalaiselvan, K.; Pandurangan, P.; Velu, R.; Robinson, J. Occurrence of Microplastics in Gastrointestinal Tracts of Planktivorous Fish from the Thoothukudi Region. Environ. Sci. Pollut. Res. 2022, 29, 44723–44731. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Nomura, M.; Horie, Y.; Okamura, H. Color Preferences and Gastrointestinal-Tract Retention Times of Mi-croplastics by Freshwater and Marine Fishes. Environ. Pollut. 2022, 304, 119253. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liang, W.; Liu, Q.X.; Fu, S.; Ma, C.; Chen, Q.; Su, L.; Craig, N.J.; Shi, H. Fish Ingest Microplastics Unintentionally. Environ. Sci. Technol. 2021, 55, 10471–10479. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, B. Ingestion of Microplastics by Fish and Its Potential Consequences from a Physical Perspective. Integr. Environ. Assess. Manag. 2017, 13, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Cverenkárová, K.; Valachovičová, M.; Mackuľak, T.; Žemlička, L.; Bírošová, L. Microplastics in the Food Chain. Life 2021, 11, 1349. [Google Scholar] [CrossRef]
- Haave, M.; Gomiero, A.; Schönheit, J.; Nilsen, H.; Olsen, A.B. Documentation of Microplastics in Tissues of Wild Coastal Animals. Front. Environ. Sci. 2021, 9, 31. [Google Scholar] [CrossRef]
- Phillips, S. Environmental Impacts of Marine Aquaculture Issue Paper; Pacific States Marine Fisheries Commission: Portland, OR, USA, 2005.
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Mi-croplastics in Zebrafish (Danio Rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef]
- Wei, L.; Wang, D.; Aierken, R.; Wu, F.; Dai, Y.; Wang, X.; Zhen, Y. The prevalence and potential implications of microplastic contamination in marine fishes from Xiamen Bay, China. Mar. Pollut. Bull. 2022, 174, 113306. [Google Scholar] [CrossRef]
- Hughes, G.M.; Morgan, M. The Structure of Fish Gills in Relation to Their Respiratory Function. Biol. Rev. 1973, 48, 419–475. [Google Scholar] [CrossRef]
- Wright, L.S.; Imogen.; Napper, I.E.; Thompson, R.C. Potential Microplastic Release from Beached Fishing Gear in Great Britain’s Region of Highest Fishing Litter Density. Mar. Pollut. Bull. 2021, 173, 113115. [Google Scholar] [CrossRef]
- Naidoo, T.S.; Thompson, R.C.; Rajkaran, A. Quantification and Characterisation of Microplastics Ingested by Selected Juvenile Fish Species Associated with Mangroves in KwaZulu-Natal, South Africa. Environ. Pollut. 2020, 257, 113635. [Google Scholar] [CrossRef] [PubMed]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E.; Saluveer, M.; Sidaoui-Haddad, G. Microplastics in Fish and Fishmeal: An Emerging Environmental Challenge? Sci. Rep. 2021, 11, 2045. [Google Scholar] [CrossRef]
- Jiwarungrueangkul, T.; Phaksopa, J.; Sompongchaiyakul, P.; Tipmanee, D. Seasonal Microplastic Variations in Estuarine Sediments from Urban Canal on the West Coast of Thailand: A Case Study in Phuket Province. Mar. Pollut. Bull. 2021, 168, 112452. [Google Scholar] [CrossRef] [PubMed]
- Pradit, S.; Noppradit, P.; Goh, P.B.; Sornplang, K.; Ong, M.C.; Towatana, P. Occurrence of Microplastics and Trace Metals in Fish and Shrimp from Songkhla Lake, Thailand during the COVID-19 Pandemic. Appl. Ecol. Environ. Res. 2021, 19, 1085–1106. [Google Scholar] [CrossRef]
- de Vries, A.N.; Sigurður, D.G.; Árnason, H.; Carlsson, P. Microplastic Ingestion by Fish: Body Size, Condition Factor and Gut Fullness Are Not Related to the Amount of Plastics Consumed. Mar. Pollut. Bull. 2020, 151, 110827. [Google Scholar] [CrossRef]
- Yin, L.; Chen, B.; Xia, B.; Shi, X.; Qu, K. Polystyrene Microplastics Alter the Behavior, Energy Reserve and Nutritional Composition of Marine Jacopever (Sebastes schlegelii). J. Hazard. Mater. 2018, 360, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Clere, I.K.; Ahmmed, F.; Remoto, P.J.G., III; Fraser-Miller, S.J.; Gordon, K.C.; VKomyakova, V.; Allan, B.J.M. Quantification and Characterization of Microplastics in Commercial Fish from Southern New Zealand. Mar. Pollut. Bull. 2022, 184, 114121. [Google Scholar] [CrossRef] [PubMed]
- Azad, S.M.O.; Towatana, P.; Pradit, S.; Patricia, B.G.; Hue, H.T. Ingestion of Microplastics by Some Commercial Fishes in the Lower Gulf of Thailand: A Preliminary Approach to Ocean Conservation. Int. J. Agric. Technol. 2018, 14, 1017–1032. [Google Scholar]
- Zhu, L.; Wang, H.; Chen, B.; Sun, X.; Qu, K.; Xia, B. Microplastic Ingestion in Deep-Sea Fish from the South China Sea. Sci. Total Environ. 2019, 677, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Bellas, J.; José Martínez-Armental, J.; Martínez-Cámara, A.; Besada, V.; Martínez-Gómez, C. Ingestion of Microplastics by Demersal Fish from the Spanish Atlantic and Mediterranean Coasts. Mar. Pollut. Bull. 2016, 109, 55–60. [Google Scholar] [CrossRef]
- Kılıç, E.; Yücel, N. Microplastic Occurrence in the Gastrointestinal Tract and Gill of Bioindicator Fish Species in the Northeastern Mediterranean. Mar. Pollut. Bull. 2022, 177, 113556. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, E.; Yücel, N.; Şahutoğlu, S.M. First Record of Microplastic Occurence at the Commercial Fish from Orontes River. Environ. Pollut. 2022, 307, 119576. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.R.; Shashoua, Y.; Crawford, A.; Drury, A.; Sheppard, K.; Stewart, K.; Sculthorp, T. ‘The Plastic Nile’: First Evidence of Microplastic Contamination in Fish from the Nile River (Cairo, Egypt). Toxics 2020, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fyhn, H.J. First Feeding of Marine Fish Larvae: Are Free Amino Acids the Source of Energy? Aquaculture 1989, 80, 111–120. [Google Scholar] [CrossRef]
- Bunge, A.; Kammann, U.; Scharsack, J.P. Exposure to Microplastic Fibers Does Not Change Fish Early Life Stage Devel-opment of Three-Spined Sticklebacks (Gasterosteus aculeatus). Microplastics Nanoplastics 2021, 1, 15. [Google Scholar] [CrossRef]
- Rønnestad, I.; Thorsen, A.; Finn, R.N. Fish Larval Nutrition: A Review of Recent Advances in the Roles of Amino Acids. Aquaculture 1999, 177, 201–216. [Google Scholar] [CrossRef]
- Wu, W.N.; Yang, J.; Criddle, C.S. Microplastics Pollution and Reduction Strategies. Front. Environ. Sci. Eng. 2016, 11, 6. [Google Scholar] [CrossRef]
- Xu, P.; Peng, G.; Su, L.; Gao, Y.; Gao, L.; Li, D. Microplastic Risk Assessment in Surface Waters: A Case Study in the Changjiang Estuary, China. Mar. Pollut. Bull. 2018, 133, 647–654. [Google Scholar] [CrossRef]
- Sun, J.; Yang, S.; Zhou, G.J.; Zhang, K.; Lu, Y.; Jin, Q.; He, Y. Release of microplastics from discarded surgical masks and their adverse impacts on the marine copepod Tigriopus japonicus. Environ. Sci. Technol. Lett. 2021, 8, 1065–1070. [Google Scholar] [CrossRef]
- Choong, W.S.; Hadibarata, T.; Tang, D.K.H. Abundance and Distribution of Microplastics in the Water and Riverbank Sediment in Malaysia—A Review. Biointerface Res. Appl. Chem. 2021, 11, 11700–11712. [Google Scholar]
- Ding, J.; Li, J.; Sun, C.; Jiang, F.; Ju, P.; Qu, L.; Zheng, Y.; He, C. Detection of Microplastics in Local Marine Organisms Using a Multi-Technology System. Anal. Methods 2019, 11, 78–87. [Google Scholar] [CrossRef]
- Cruz, A.H. Impact of Plastic Waste Ingestion by Fish. Circ. Econ. Sustain. 2022, 3, 607–616. [Google Scholar] [CrossRef]
- Mao, X.; Xu, Y.; Cheng, Z.; Yang, Y.; Guan, Z.; Jiang, L.; Tang, K. The Impact of Microplastic Pollution on Ecological Environment: A Review. Front. Biosci.-Landmark 2022, 27, 46. [Google Scholar] [CrossRef] [PubMed]
- Sunghyun, N.; Slopek, R.; Wolf, D.; Warnock, M.; Condon, B.D.; Sawhney, P.; Gbur, E.; Reynolds, M.; Allen, C. Comparison of biodegradation of low-weight hy-droentangled raw cotton nonwoven fabric and that of commonly used disposable nonwoven fabrics in aerobic Captina silt loam soil. Text. Res. J. 2016, 86, 155–166. [Google Scholar] [CrossRef]
- Marielis, C.Z.; Pawlak, J.J.; Daystar, J.; Ankeny, M.; Cheng, J.J.; Venditti, R.A. Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. Mar. Pollut. Bull. 2019, 142, 394–407. [Google Scholar] [CrossRef]
- Shruti, V.C.; Perez-Guevara, F.; Elizade-Martinez, I.; Kutralam-Muniasamy, G. Re-usable masks for COVID-19: A missing piece of the microplastic problem during the global health crisis. Mar. Pollut. Bull. 2020, 161, 111777. [Google Scholar] [CrossRef] [PubMed]
- Milošević, M.; Krkobabić, A.; Radoičić, M.; Šaponjić, Z.; Radetić, T.; Radetić, M. Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil. Carbohydr. Polym. 2017, 158, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Ozturk, M.; Frey, M. Soil biodegradation of cotton treated with common finishes. Cellulose 2021, 28, 4485–4494. [Google Scholar] [CrossRef]
- Kim, S.; Cho, Y.; Prak, C.H. Effect of cotton fabric properties on fiber release and marine biodegradation. Text. Res. J. 2022, 92, 2121–2137. [Google Scholar] [CrossRef]
Fish Sample Data and MP Data | Minimum | Maximum | Mean ± S.E. |
---|---|---|---|
Weight data | |||
Standard length (cm) | 15.80 | 23.50 | 19.50 ± 0.35 |
Body weight (g) | 51.39 | 152.50 | 100.32 ± 5.13 |
Gill weight (g) | 2.17 | 6.61 | 4.34 ± 0.19 |
Stomach weight (g) | 0.52 | 2.94 | 1.72 ± 0.10 |
Tissue weight (g) | 1.23 | 5.88 | 3.57 ± 0.19 |
MP data | |||
MPs in gills (items/gill) | 0.00 | 3.00 | 1.25 ± 0.13 |
MPs in gills (items/g gill) | 0.00 | 0.92 | (0.30 ± 0.03) a |
MPs in the stomach (items/stomach) | 0.00 | 4.00 | 1.35 ± 0.15 |
MPs in the stomach (items/g stomach) | 0.00 | 3.85 | (0.91 ± 0.13) c |
MPs in tissue (items/tissue) | 0.00 | 4.00 | 1.55 ± 0.19 |
MPs in tissue (items/g tissue) | 0.00 | 3.25 | (0.53 ± 0.09) b |
MPs in fish (items/ind) | 0.00 | 8.00 | 4.15 ± 0.30 |
Fish Species | Habitat | Abundance MPs | Shape | Size (mm) | Reference |
---|---|---|---|---|---|
Stomach | |||||
Arius maculatus, n = 11 | Benthic | 2.73 ± 0.15 items/st * | Fiber | 0.15–5 | [51] |
Rexea solandri | Deep waters | 1.53 ± 1.08 items/g or 1.96 ± 1.12 items/ind | Film-like | <1 | [56] |
Scyliorhinus canicula, n = 72 | Demersal | 1.20 ± 0.45 items/ind | Fiber | 0.5–1 | [57] |
Merluccius merluccius, n = 12 | Demersal | 1.0 items/ind | Fiber | 0.5–1 | |
Mullus barbatus, n = 128 | Demersal | 1.75 ± 1.14 items/ind | Fiber | 0.5–1 | |
Panna microdon | Demersal | 0.85 ± 1.06items/st * | Fiber | - | [55] |
Dendrophysa russelli | Demersal | 0.88 ± 1.12 items/st * | Fiber | - | |
Johnius borneensis | Benthopelagic | 0.90 ± 0.88 items/st * | Fiber | - | |
Johnius weberi | Benthopelagic | 1.14 ± 1.21 items/st * | Fiber | - | |
O. militaris, n = 40 | Benthic | 1.35 ± 0.15items/st * 0.91 ± 0.13 items/g | Fiber | >1 | This study |
Tissue | |||||
Bagrus bayad, n = 14 | Demersal | 4.7 ± 1.7 items/ind | Fiber | >1 | [60] |
Mystus vittatus, n = 3 | Demersal | Fiber | >1 | ||
Heteropneustes fossilis, n =2 | Demersal | Fiber | >1 | ||
O. militaris, n = 40 | Benthic | 1.55 ± 0.19 items/tis * or 0.53 ± 0.09 items/g | Fiber | >1 | This study |
Gill | |||||
Mullus barbatus, n = 43 | Demersal | 3.54 items/ind | Fiber | <1 | [58] |
Mullus surmuletus, n = 41 | Demersal | 3.22 items/ind | Fiber | ||
Saurida undosquamis, n = 39 | Reef-associated | 4.65 items/ind | Fiber | ||
Mugil cephalus, n = 20 | Benthopelagic | 7.56 items/ind | Fiber | ||
Clarias gariepinus, n = 10 | Benthopelagic | 3.8 ± 2.7 items/ind | Fiber | <0.25 to >5 | [59] |
O. militaris, n = 40 | Benthic | 1.25 ± 0.13 items/gill 0.30 ± 0.03 items/g | Fiber | >1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradit, S.; Noppradit, P.; Jitkaew, P.; Sengloyluan, K.; Yucharoen, M.; Suwanno, P.; Tanrattanakul, V.; Sornplang, K.; Nitiratsuwan, T. Microplastic Accumulation in Catfish and Its Effects on Fish Eggs from Songkhla Lagoon, Thailand. J. Mar. Sci. Eng. 2023, 11, 723. https://doi.org/10.3390/jmse11040723
Pradit S, Noppradit P, Jitkaew P, Sengloyluan K, Yucharoen M, Suwanno P, Tanrattanakul V, Sornplang K, Nitiratsuwan T. Microplastic Accumulation in Catfish and Its Effects on Fish Eggs from Songkhla Lagoon, Thailand. Journal of Marine Science and Engineering. 2023; 11(4):723. https://doi.org/10.3390/jmse11040723
Chicago/Turabian StylePradit, Siriporn, Prakrit Noppradit, Preyanuch Jitkaew, Karnda Sengloyluan, Mathinee Yucharoen, Phudith Suwanno, Varaporn Tanrattanakul, Kittiwara Sornplang, and Thongchai Nitiratsuwan. 2023. "Microplastic Accumulation in Catfish and Its Effects on Fish Eggs from Songkhla Lagoon, Thailand" Journal of Marine Science and Engineering 11, no. 4: 723. https://doi.org/10.3390/jmse11040723
APA StylePradit, S., Noppradit, P., Jitkaew, P., Sengloyluan, K., Yucharoen, M., Suwanno, P., Tanrattanakul, V., Sornplang, K., & Nitiratsuwan, T. (2023). Microplastic Accumulation in Catfish and Its Effects on Fish Eggs from Songkhla Lagoon, Thailand. Journal of Marine Science and Engineering, 11(4), 723. https://doi.org/10.3390/jmse11040723