Review of the Decision Support Methods Used in Optimizing Ship Hulls towards Improving Energy Efficiency
Abstract
:1. Introduction
2. Decision Support Methods and Techniques
2.1. Operational Research
2.2. Machine Learning
3. Application of Decision Support Methods and Techniques for Efficient Ship Hulls
3.1. Hull Form
3.2. Hull Structure
3.3. Hull Cleaning
3.4. Hull Lubrication
4. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three dimensional |
ABS | American Bureau of Shipping |
ACS | Air Cavity Ships |
AF | Antifouling |
AI | Artificial intelligence |
ALDR | Air layer drag reduction |
ALS | Air lubrication system |
API | Application programming interfaces |
ASA | Adaptive Simulated Annealing |
CCS | Carbon capture and storage |
CFD | Computational fluid dynamics |
CII | Carbon Intensity Indicator |
CLSVOF | Coupled Level-Set and Volume of Fluid |
CNN | Convolutional neural network |
CO2 | Carbon dioxide |
DBN | Deep belief network |
DFA | Detrended Fluctuation Analysis |
DoE | Design of experiments |
ECAs | Emission Control Areas |
EDM | Electro-discharge machining |
EEDI | Energy Efficiency Design Index |
EEOI | Energy Efficiency Operational Indicator |
EEXI | Energy Efficiency Existing Ship Index |
FEM | Finite element analysis |
FFD | Free-form deformation method |
FR | Foul-release |
GA | Genetic algorithm |
GHG | Greenhouse gas |
IMO | International Maritime Organization |
IQPSO | Immune quantum-behaved particle swarm optimization |
KCS | KRISO Container Ship |
MARS | Model-based Annealing Random Search |
MEPC | Marine Environment Protection Committee |
ML | Machine learning |
MOGA | Multi-objective genetic algorithm |
MOPOP | Multi-objective probabilistic optimization process |
NOx | Nitrogen oxides |
NSGAII | Non-dominated sorting genetic algorithm II |
OR | Operation research |
RANS | Reynolds Averaged Navier–Stokes |
RBFNN | Radial basis neural network |
RBOD | Reliability-based optimization design |
Ro-Ro | Roll-on/roll-off |
SCR | Selective catalytic reduction |
SEEMP | Ship Energy Efficiency Management Plan |
SOM | Self-Organizing Maps |
SOx | Sulphur oxides |
TPBF | Tensor-product basis function |
UD | Uniform design |
VOF | Volume of Fluid |
WAIP | Winged Air Inject Pipe |
WHRS | Waste heat recovery system |
References
- IMO. Nitrogen Oxides (NOx)—Regulation 13. IMO. Available online: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx (accessed on 28 September 2017).
- IMO. Sulphur oxides (SOx)—Regulation 14. IMO. Available online: http://www.imo.org/en/OurWork/environment/pollutionprevention/airpollution/pages/sulphur-oxides-(sox)-%E2%80%93-regulation-14.aspx (accessed on 28 September 2017).
- DNV. EEXI—Energy Efficiency Existing Ship Index. Available online: https://www.dnvgl.com/maritime/insights/topics/eexi/calculation.html (accessed on 1 December 2020).
- Psaraftis, H.N. Shipping decarbonization in the aftermath of MEPC 76. Clean. Logist. Supply Chain. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Karatuğ, Ç.; Arslanoğlu, Y.; Guedes Soares, C. Evaluation of decarbonization strategies for existing ships. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 45–54. [Google Scholar]
- Trivyza, N.L.; Rentizelas, A.; Theotokatos, G.; Boulougouris, E. Decision support methods for sustainable ship energy systems: A state-of-the-art review. Energy 2022, 239, 122288. [Google Scholar] [CrossRef]
- Stark, C.; Shi, W.; Troll, M. Cavitation funnel effect: Bio-inspired leading-edge tubercle application on ducted marine propeller blades. Appl. Ocean Res. 2021, 116, 102864. [Google Scholar] [CrossRef]
- Stark, C.; Xu, Y.; Zhang, M.; Yuan, Z.; Tao, L.; Shi, W. Study on Applicability of Energy-Saving Devices to Hydrogen Fuel Cell-Powered Ships. J. Mar. Sci. Eng. 2022, 10, 388. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine. Energy 2019, 168, 897–908. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. A nonlinear optimization tool to simulate a marine propulsion system for ship conceptual design. Ocean Eng. 2020, 210, 107417. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization of the performance of marine diesel engines to minimize the formation of SOx emissions. J. Mar. Sci. Appl. 2020, 19, 473–484. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, R.; Feng, Y.; Zhu, Y. Evaluation of Miller cycle and fuel injection direction strategies for low NOx emission in marine two-stroke engine. Int. J. Hydrogen Energy 2017, 42, 20351–20360. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, H.; Wang, J.; Zhang, N. Optimization of the injection parameters of a diesel/natural gas dual fuel engine with multi-objective evolutionary algorithms. Appl. Therm. Eng. 2019, 150, 70–79. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization procedures for a twin controllable pitch propeller of a ROPAX ship at minimum fuel consumption. J. Mar. Eng. Technol. 2022. [Google Scholar] [CrossRef]
- El-Gohary, M.M. Overview of past, present and future marine power plants. J. Mar. Sci. Appl. 2013, 12, 219–227. [Google Scholar] [CrossRef]
- Elkafas, A.G.; Elgohary, M.M.; Shouman, M.R. Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships. Environ. Sci. Pollut. Res. 2021, 28, 15210–15222. [Google Scholar] [CrossRef] [PubMed]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. A review of the use of Biodiesel as a green fuel for diesel engines. In Developments in Maritime Technology and Engineering; Guedes Soares, C., Santos, T., Eds.; Taylor & Francis Group: London, UK, 2021; pp. 481–490. [Google Scholar]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Assessment of marine Genset performance with biodiesel fuel using the double-Wiebe function. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 545–551. [Google Scholar]
- DNV. Maritime Forecast to 2050: Energy Transition Outlook 2020; DNV: Bærum, Norway, 2020. [Google Scholar]
- Altosole, M.; Benvenuto, G.; Zaccone, R.; Campora, U. Comparison of Saturated and Superheated Steam Plants for Waste-Heat Recovery of Dual-Fuel Marine Engines. Energies 2020, 13, 985. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.; Tam, I.C.K.; Wu, D. Thermo-Economic Performance of an Organic Rankine Cycle System Recovering Waste Heat Onboard an Offshore Service Vessel. J. Mar. Sci. Eng. 2020, 8, 351. [Google Scholar] [CrossRef]
- Ouyang, T.; Huang, G.; Lu, Y.; Liu, B.; Hu, X. Multi-criteria assessment and optimization of waste heat recovery for large marine diesel engines. J. Clean. Prod. 2021, 309, 127307. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Sensitivity analysis of the steam Rankine cycle in marine applications. In Developments in Maritime Technology and Engineering; Guedes Soares, C., Santos, T., Eds.; Taylor & Francis Group: London, UK, 2021; pp. 491–500. [Google Scholar]
- Liang, X.; Zhao, B.; Zhang, F.; Liu, Q. Compact research for maritime selective catalytic reduction reactor based on response surface methodology. Appl. Energy 2019, 254, 113702. [Google Scholar] [CrossRef]
- Sung, Y.; Choi, M.; Park, T.; Choi, C.; Park, Y.; Choi, G. Synergistic effect of mixer and mixing chamber on flow mixing and NOx reduction in a marine urea-SCR system. Chem. Eng. Process. 2020, 150, 107888. [Google Scholar] [CrossRef]
- Ni, P.; Wang, X.; Li, H. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines. Fuel 2020, 279, 118477. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, S.; Shreka, M.; Feng, Y. A Numerical Investigation on the Optimization of Uneven Flow in a Marine De-SOx Scrubber. Processes 2020, 8, 862. [Google Scholar] [CrossRef]
- Bui, K.Q.; Ölçer, A.I.; Kitada, M.; Ballini, F. Selecting technological alternatives for regulatory compliance towards emissions reduction from shipping: An integrated fuzzy multi-criteria decision-making approach under vague environment. Proc. Inst. Mech. Eng. M 2021, 235, 272–287. [Google Scholar] [CrossRef]
- Wilailak, S.; Yoo, B.-H.; Kim, Y.; Lee, C.-J. Parametric analysis and design optimization of wet SOx scrubber system in marine industry. Fuel 2021, 304, 121369. [Google Scholar] [CrossRef]
- Karatuğ, Ç.; Arslanoğlu, Y.; Guedes Soares, C. Feasibility Analysis of the Effects of Scrubber Installation on Ships. J. Mar. Sci. Eng. 2022, 10, 1838. [Google Scholar] [CrossRef]
- Buirma, M.; Vleugel, J.; Pruyn, J.; Doedée, V.; Schott, D. Ship-Based Carbon Capture and Storage: A Supply Chain Feasibility Study. Energies 2022, 15, 813. [Google Scholar] [CrossRef]
- Ammar, N.R. Energy- and cost-efficiency analysis of greenhouse gas emission reduction using slow steaming of ships: Case study RO-RO cargo vessel. Ships Offshore Struct. 2018, 13, 868–876. [Google Scholar] [CrossRef]
- Dere, C.; Deniz, C. Load optimization of central cooling system pumps of a container ship for the slow steaming conditions to enhance the energy efficiency. J. Clean. Prod. 2019, 222, 206–217. [Google Scholar] [CrossRef]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Effect of different speed reduction strategies on ship fuel consumption in realistic weather conditions. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 553–561. [Google Scholar]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Coupled Engine-Propeller Selection Procedure to Minimize Fuel Consumption at a Specified Speed. J. Mar. Sci. Eng. 2021, 9, 59. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Design of Propeller Series Optimizing Fuel Consumption and Propeller Efficiency. J. Mar. Sci. Eng. 2021, 9, 1226. [Google Scholar] [CrossRef]
- Lungu, A. Energy-Saving Devices in Ship Propulsion: Effects of Nozzles Placed in Front of Propellers. J. Mar. Sci. Eng. 2021, 9, 125. [Google Scholar] [CrossRef]
- Saettone, S.; Taskar, B.; Steen, S.; Andersen, P. Experimental measurements of propulsive factors in following and head waves. Appl. Ocean Res. 2021, 111, 102639. [Google Scholar] [CrossRef]
- Samsul, M.B. Blade Cup Method for Cavitation Reduction in Marine Propellers. Pol. Marit. Res. 2021, 28, 54–62. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. An optimisation procedure for propeller selection for different shaft inclinations. Int. J. Marit. Eng. 2022, 164, 295–315. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Towards Fuel Consumption Reduction Based on the Optimum Contra-Rotating Propeller. J. Mar. Sci. Eng. 2022, 10, 1657. [Google Scholar] [CrossRef]
- Vettor, R.; Guedes Soares, C. Development of a ship weather routing system. Ocean Eng. 2016, 123, 1–14. [Google Scholar] [CrossRef]
- Vettor, R.; Tadros, M.; Ventura, M.; Guedes Soares, C. Route planning of a fishing vessel in coastal waters with fuel consumption restraint. In Maritime Technology and Engineering 3; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2016; pp. 167–173. [Google Scholar]
- Vettor, R.; Tadros, M.; Ventura, M.; Guedes Soares, C. Influence of main engine control strategies on fuel consumption and emissions. In Progress in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2018; pp. 157–163. [Google Scholar]
- Moreira, L.; Vettor, R.; Guedes Soares, C. Neural Network Approach for Predicting Ship Speed and Fuel Consumption. J. Mar. Sci. Eng. 2021, 9, 119. [Google Scholar] [CrossRef]
- Zaccone, R.; Ottaviani, E.; Figari, M.; Altosole, M. Ship voyage optimization for safe and energy-efficient navigation: Adynamic programming approach. Ocean Eng. 2018, 153, 215–224. [Google Scholar] [CrossRef]
- Zaccone, R.; Figari, M.; Martelli, M. An optimization tool for ship route planning in real weather scenarios. In Proceedings of the International Offshore and Polar Engineering Conference, Sapporo, Japan, 10−15 June 2018. [Google Scholar]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Effect of propeller cup on the reduction of fuel consumption in realistic weather conditions. J. Mar. Sci. Eng. 2022, 10, 1039. [Google Scholar] [CrossRef]
- Lloyd’s Register. Implementing the Energy Efficiency Design Index; Lloyd’s Register: London, UK, 2012. [Google Scholar]
- Islam, H.; Ventura, M.; Guedes Soares, C.; Tadros, M.; Abdelwahab, H.S. Comparison between empirical and CFD based methods for ship resistance and power prediction. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 347–357. [Google Scholar]
- Mallouppas, G.; Yfantis, E.A. Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals. J. Mar. Sci. Eng. 2021, 9, 415. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp. Res. D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Department for Transport. Clean Maritime Plan; Department for Transport: London, UK, 2019.
- Hillier, F.S.; Lieberman, G.J. Introduction to Operations Research; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Russell, R. Machine Learning: Step-by-Step Guide To Implement Machine Learning Algorithms with Python; Create Space Independent Publishing Platform: Scotts Valley, CA, USA, 2018. [Google Scholar]
- Wang, F.; Liang, H.; Zhang, Y.; Xu, Q.; Zong, R. Recognition and Classification of Ship Images Based on SMS-PCNN Model. Front. Neurorobot. 2022, 16, 889308. [Google Scholar] [CrossRef]
- Mascaraque-Ramírez, C.; Franco, P. High-precision machining in the shipbuilding industry. Applicability and advantages of electro discharge machining technology. Ships Offshore Struct. 2018, 13, 750–758. [Google Scholar] [CrossRef]
- Hou, Y.H. Hull form uncertainty optimization design for minimum EEOI with influence of different speed perturbation types. Ocean Eng. 2017, 140, 66–72. [Google Scholar] [CrossRef]
- Hou, Y.h.; Li, Y.j.; Liang, X. Mixed aleatory/epistemic uncertainty analysis and optimization for minimum EEDI hull form design. Ocean Eng. 2019, 172, 308–315. [Google Scholar] [CrossRef]
- Pechenyuk, A.V. Optimization of a hull form for decrease ship resistance to movement. Comput. Res. Model 2017, 9, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gu, X.; Ma, N.; Zhang, Y. A Ship Hull Optimization for Low Resistance and Uniform Wake Based on the Simulation of Hydrodynamics Performance. In Proceedings of the 32nd International Ocean and Polar Engineering Conference, Shanghai, China, 5–10 June 2022. [Google Scholar]
- Edalat, P.; Barzandeh, A. Fuel efficiency optimization of tanker with focus on hull parameters. J. Ocean Eng. Sci. 2017, 2, 76–82. [Google Scholar] [CrossRef]
- Huang, Y.; Hou, G.; Cheng, X.; Feng, B.; Gao, L.; Xiao, M. A new vortex search algorithm with gradient-based approximation for optimization of the fore part of KCS container ship. J. Mar. Sci. Technol. 2017, 22, 403–413. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, B.; Liu, Z.; Zhang, H. The improvement of a variance-based sensitivity analysis method and its application to a ship hull optimization model. J. Mar. Sci. Technol. 2017, 22, 694–709. [Google Scholar] [CrossRef]
- Wu, J.; Liu, X.; Zhao, M.; Wan, D. Neumann-Michell theory-based multi-objective optimization of hull form for a naval surface combatant. Appl. Ocean Res. 2017, 63, 129–141. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, W.; Wan, D. Resistance and wake distortion optimization of JBC considering ship-propeller interaction. Ocean Eng. 2022, 244, 110376. [Google Scholar] [CrossRef]
- Goren, O.; Calisal, S.M.; Bulent Danisman, D. Mathematical programming basis for ship resistance reduction through the optimization of design waterline. J. Mar. Sci. Technol. 2017, 22, 772–783. [Google Scholar] [CrossRef]
- Duy, T.-N.; Hino, T.; Suzuki, K. Numerical study on stern flow fields of ship hulls with different transom configurations. Ocean Eng. 2017, 129, 401–414. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Lu, C. A universal prototype design framework of the stem and stern contours of hull surface and the self-adaptive solving strategy. J. Mar. Sci. Technol. 2018, 23, 399–411. [Google Scholar] [CrossRef]
- Cheng, X.; Feng, B.; Liu, Z.; Chang, H. Hull surface modification for ship resistance performance optimization based on Delaunay triangulation. Ocean Eng. 2018, 153, 333–344. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Z.; Dai, Y.; Wang, F.; Cai, J.; Shen, Z. Multidisciplinary optimization of an offshore aquaculture vessel hull form based on the support vector regression surrogate model. Ocean Eng. 2018, 166, 145–158. [Google Scholar] [CrossRef]
- Tezdogan, T.; Shenglong, Z.; Demirel, Y.K.; Liu, W.; Leping, X.; Yuyang, L.; Kurt, R.E.; Djatmiko, E.B.; Incecik, A. An investigation into fishing boat optimisation using a hybrid algorithm. Ocean Eng. 2018, 167, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.H.; Liang, X.I.; Mu, X.Y. Hull lines reliability-based optimisation design for minimum eedi. Brodogradnja 2018, 69, 17–33. [Google Scholar] [CrossRef]
- Lin, Y.; He, J.; Li, K. Hull form design optimization of twin-skeg fishing vessel for minimum resistance based on surrogate model. Adv. Eng. Softw. 2018, 123, 38–50. [Google Scholar] [CrossRef]
- Lindstad, E.; Bø, T.I. Potential power setups, fuels and hull designs capable of satisfying future EEDI requirements. Transp. Res. D Transp. Environ. 2018, 63, 276–290. [Google Scholar] [CrossRef]
- Cheng, X.; Feng, B.; Chang, H.; Liu, Z.; Zhan, C. Multi-objective optimisation of ship resistance performance based on CFD. J. Mar. Sci. Technol. 2019, 24, 152–165. [Google Scholar] [CrossRef]
- Qiang, Z.; Hai-Chao, C.; Bai-Wei, F.; Zu-Yuan, L.; Cheng-Sheng, Z. Research on knowledge-extraction technology in optimisation of ship-resistance performance. Ocean Eng. 2019, 179, 325–336. [Google Scholar] [CrossRef]
- Guan, G.; Yang, Q.; Yang, X.; Wang, Y. A new method for parametric design of hull surface based on energy optimization. J. Mar. Sci. Technol. 2019, 24, 424–436. [Google Scholar] [CrossRef]
- Seok, W.; Kim, G.H.; Seo, J.; Rhee, S.H. Application of the Design of Experiments and Computational Fluid Dynamics to Bow Design Improvement. J. Mar. Sci. Eng. 2019, 7, 226. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.-W.; Kim, Y. Hull form optimization in the conceptual design stage considering operational efficiency in waves. Proc. Inst. Mech. Eng. M 2019, 233, 745–759. [Google Scholar] [CrossRef] [Green Version]
- Skoupas, S.; Zaraphonitis, G.; Papanikolaou, A. Parametric design and optimisation of high-speed Ro-Ro Passenger ships. Ocean Eng. 2019, 189, 106346. [Google Scholar] [CrossRef]
- NAPA. Intelligent Solutions for Maritime Industry. Available online: https://www.napa.fi/?gclid=Cj0KCQjwzLCVBhD3ARIsAPKYTcRGdJMri-H3az-Vekalwqdl2YlC8b8FY_DfFbsPmvHiD3Xqs5Pl5mEaAkWEEALw_wcB (accessed on 5 May 2022).
- Coppedè, A.; Gaggero, S.; Vernengo, G.; Villa, D. Hydrodynamic shape optimization by high fidelity CFD solver and Gaussian process based response surface method. Appl. Ocean Res. 2019, 90, 101841. [Google Scholar] [CrossRef]
- Zhang, S.; Tezdogan, T.; Zhang, B.; Lin, L. Research on the hull form optimization using the surrogate models. Eng. Appl. Comput. Fluid Mech. 2021, 15, 747–761. [Google Scholar] [CrossRef]
- Zhang, S. Research on the Deep Learning Technology in the Hull Form Optimization Problem. J. Mar. Sci. Eng 2022, 10, 1735. [Google Scholar] [CrossRef]
- Qiang, Z.; Bai-Wei, F.; Zu-Yuan, L.; Hai-Chao, C.; Xiao, W. Optimization method for hierarchical space reduction method and its application in hull form optimization. Ocean Eng. 2022, 262, 112108. [Google Scholar] [CrossRef]
- Feng, Y.; Moctar, O.e.; Schellin, T.E. Hydrodynamic optimisation of a multi-purpose wind offshore supply vessel. Ship Technol. Res. 2020, 67, 69–83. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, W.; Jia, P.; Xie, Y. Optimisation of hull form of ocean-going trawler. Brodogradnja 2021, 72, 33–46. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Z.; Feng, Y. Many-objective optimization for a deep-sea aquaculture vessel based on an improved RBF neural network surrogate model. J. Mar. Sci. Technol. 2021, 26, 582–605. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Z.; Dai, Y.; Cui, L.; Zhang, Z.; Wang, P. Multi-objective optimization of a bow thruster based on URANS numerical simulations. Ocean Eng. 2022, 247, 110784. [Google Scholar] [CrossRef]
- Zha, L.; Zhu, R.; Hong, L.; Huang, S. Hull form optimization for reduced calm-water resistance and improved vertical motion performance in irregular head waves. Ocean Eng. 2021, 233, 109208. [Google Scholar] [CrossRef]
- Lee, J.; Park, D.-M.; Kim, Y. Experimental investigation on the added resistance of modified KVLCC2 hull forms with different bow shapes. Proc. Inst. Mech. Eng. M 2017, 231, 395–410. [Google Scholar] [CrossRef]
- Zhang, S.; Tezdogan, T.; Zhang, B.; Xu, L.; Lai, Y. Hull form optimisation in waves based on CFD technique. Ships Offshore Struct. 2018, 13, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Kim, S.-S.; Lee, S.-S.; Kang, D.; Lee, J.-C. Prediction of added resistance using genetic programming. Ocean Eng. 2018, 153, 104–111. [Google Scholar] [CrossRef]
- Kim, B.-S.; Oh, M.-J.; Lee, J.-H.; Kim, Y.-H.; Roh, M.-I. Study on Hull Optimization Process Considering Operational Efficiency in Waves. Processes 2021, 9, 898. [Google Scholar] [CrossRef]
- Feng, Y.; el Moctar, O.; Schellin, T.E. Parametric Hull Form Optimization of Containerships for Minimum Resistance in Calm Water and in Waves. J. Mar. Sci. Appl. 2021, 20, 670–693. [Google Scholar] [CrossRef]
- Yin, X.-B.; Lu, Y.; Zou, J.; Wan, L. Numerical and experimental study on hydrodynamic bulbous bow hull-form optimization for various service conditions due to slow steaming of container vessel. Proc. Inst. Mech. Eng. M 2019, 233, 1103–1122. [Google Scholar] [CrossRef]
- Hou, H.; Krajewski, M.; Ilter, Y.K.; Day, S.; Atlar, M.; Shi, W. An experimental investigation of the impact of retrofitting an underwater stern foil on the resistance and motion. Ocean Eng. 2020, 205, 107290. [Google Scholar] [CrossRef]
- Gilbert, P.; Wilson, P.; Walsh, C.; Hodgson, P. The role of material efficiency to reduce CO2 emissions during ship manufacture: A life cycle approach. Mar. Policy 2017, 75, 227–237. [Google Scholar] [CrossRef]
- Welaya, Y.M.A.; Naby, M.M.A.; Tadros, M.Y. Technological and economic study of ship recycling in Egypt. Int. J. Nav. Archit. Ocean Eng. 2012, 4, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Oguz, E.; Jeong, B.; Zhou, P. Life cycle cost and environmental impact analysis of ship hull maintenance strategies for a short route hybrid ferry. Ocean Eng. 2018, 161, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Frangopol, D.M. Multi-objective probabilistic optimum monitoring planning considering fatigue damage detection, maintenance, reliability, service life and cost. Struct. Multidiscip. Optim. 2018, 57, 39–54. [Google Scholar] [CrossRef]
- Zareei, M.R.; Iranmanesh, M. Optimal Risk-Based Maintenance Planning of Ship Hull Structure. J. Mar. Sci. Appl. 2018, 17, 603–624. [Google Scholar] [CrossRef]
- Kim, D.H.; Paik, J.K. Ultimate limit state-based multi-objective optimum design technology for hull structural scantlings of merchant cargo ships. Ocean Eng. 2017, 129, 318–334. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Z.; Zhou, Y.; Guo, Z. Optimal Design of Integrative Superstructure in Composite Materials. Ship Build. China 2017, 58, 30–37. [Google Scholar]
- Garbatov, Y.; Huang, Y.C. Multiobjective Reliability-Based Design of Ship Structures Subjected to Fatigue Damage and Compressive Collapse. J. Offshore Mech. Arct. Eng. 2020, 142, 051701. [Google Scholar] [CrossRef]
- Silva-Campillo, A.; Ulla-Campos, L.; Suárez-Bermejo, J.C.; Herreros-Sierra, M.A. Effect of bow hull form on the buckling strength assessment of the corner bracket connection. Ocean Eng. 2022, 265, 112562. [Google Scholar] [CrossRef]
- Mancuso, A.; Saporito, A.; Tumino, D. Designing the internal reinforcements of a sailing boat using a topology optimization approach. Appl. Ocean Res. 2022, 129, 103384. [Google Scholar] [CrossRef]
- Jafaryeganeh, H.; Ventura, M.; Guedes Soares, C. Multi-Objective Optimization of Internal Compartment Layout of Oil Tankers. J. Ship Prod. Des. 2019, 35, 374–385. [Google Scholar] [CrossRef]
- Jafaryeganeh, H.; Ventura, M.; Guedes Soares, C. Effect of normalization techniques in multi-criteria decision making methods for the design of ship internal layout from a Pareto optimal set. Struct. Multidiscip. Optim. 2020, 62, 1849–1863. [Google Scholar] [CrossRef]
- Jafaryeganeh, H.; Ventura, M.; Guedes Soares, C. Robust-based optimization of the hull internal layout of oil tanker. Ocean Eng. 2020, 216, 107846. [Google Scholar] [CrossRef]
- Smith, F.; Colvin, G. Magnetic Track. U.S. Patent US20140077587A1, 20 March 2014. [Google Scholar]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Assessment of Ship Fuel Consumption for Different Hull Roughness in Realistic Weather Conditions. J. Mar. Sci. Eng. 2022, 10, 1891. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Effect of Hull and Propeller Roughness during the Assessment of Ship Fuel Consumption. J. Mar. Sci. Eng. 2023, 11, 784. [Google Scholar] [CrossRef]
- Oliveira, D. The Enemy Below-Adhesion and Friction of Ship Hull Fouling. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2017. [Google Scholar]
- Song, C.; Cui, W. Review of Underwater Ship Hull Cleaning Technologies. J. Mar. Sci. Appl. 2020, 19, 415–429. [Google Scholar] [CrossRef]
- Swain, G.; Erdogan, C.; Foy, L.; Gardner, H.; Harper, M.; Hearin, J.; Hunsucker, K.Z.; Hunsucker, J.T.; Lieberman, K.; Nanney, M.; et al. Proactive In-Water Ship Hull Grooming as a Method to Reduce the Environmental Footprint of Ships. Front. Mar. Sci. 2022, 8, 808549. [Google Scholar] [CrossRef]
- Adland, R.; Cariou, P.; Jia, H.; Wolff, F.-C. The energy efficiency effects of periodic ship hull cleaning. J. Clean. Prod. 2018, 178, 1–13. [Google Scholar] [CrossRef]
- Farkas, A.; Song, S.; Degiuli, N.; Martić, I.; Demirel, Y.K. Impact of biofilm on the ship propulsion characteristics and the speed reduction. Ocean Eng. 2020, 199, 107033. [Google Scholar] [CrossRef]
- Demo, N.; Tezzele, M.; Mola, A.; Rozza, G. Hull Shape Design Optimization with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing. J. Mar. Sci. Eng. 2021, 9, 185. [Google Scholar] [CrossRef]
- Oliveira, D.R.; Granhag, L. Ship hull in-water cleaning and its effects on fouling-control coatings. Biofouling 2020, 36, 332–350. [Google Scholar] [CrossRef]
- Erol, E.; Cansoy, C.E.; Aybar, O.Ö. Assessment of the impact of fouling on vessel energy efficiency by analyzing ship automation data. Appl. Ocean Res. 2020, 105, 102418. [Google Scholar] [CrossRef]
- Le, A.V.; Kyaw, P.T.; Veerajagadheswar, P.; Muthugala, M.A.V.J.; Elara, M.R.; Kumar, M.; Khanh Nhan, N.H. Reinforcement learning-based optimal complete water-blasting for autonomous ship hull corrosion cleaning system. Ocean Eng. 2021, 220, 108477. [Google Scholar] [CrossRef]
- Yusuf, Y.; Ghazali, M.J.; Taha, M.M.; Omar, N.I. A brief overview of the marine environmentally friendly anti-fouling surface strategy. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022. [Google Scholar] [CrossRef]
- Safety4Sea. Air Lubrication: How Blowing Bubbles under Ships Can Reduce Emissions. Available online: https://safety4sea.com/cm-how-blowing-bubbles-under-ships-can-reduce-emissions/?utm_medium=DNV%20-%20Maritime&utm_campaign=MARANDE%2CBA-Maritime&utm_source=linkedin&utm_content=90d3105014b744b7b4fde5c867252628-5011444&utm_term=social&fbclid=IwAR1DLxJyO2IinhsRqoTAPcvh_OmCrKLWmRWnxhCAhYOK-61TQuKkVg2hzPQ (accessed on 5 March 2023).
- ABS. Air Lubrication Technology; ABS: Spring, TX, USA, 2019. [Google Scholar]
- Sindagi, S.; Vijayakumar, R.; Saxena, B.K. Parametric CFD investigation of ALS technique on reduction in drag of bulk carrier. Ships Offshore Struct. 2020, 15, 417–430. [Google Scholar] [CrossRef]
- Slyozkin, A.; Atlar, M.; Sampson, R.; Seo, K.C. An experimental investigation into the hydrodynamic drag reduction of a flat plate using air-fed cavities. Ocean Eng. 2014, 76, 105–120. [Google Scholar] [CrossRef]
- Yanuar; Putra, M.S.G.; Akbar, M.; Alief, M.; Fatimatuzzahra. Numerical Study on Influence of Hydrofoil Clearance Towards Total Drag Reduction on Winged Air Induction Pipe for Air Lubrication. Int. J. Technol. 2020, 11, 91–99. [Google Scholar] [CrossRef] [Green Version]
- MEPC.1/Circ.815 17. In Guidance on Treatment of Innovative Energy Efficiency Technologies for Calculation and Verification of the Attained EEDI; IMO: London, UK, 2013.
- Giernalczyk, M.; Kaminski, P. Assessment of the Propulsion System Operation of the Ships Equipped with the Air Lubrication System. Sensors 2021, 21, 1357. [Google Scholar] [CrossRef] [PubMed]
- Yanuar; Waskito, K.T.; Pratama, S.Y.; Candra, B.D.; Rahmat, B.A. Comparison of Microbubble and Air Layer Injection with Porous Media for Drag Reduction on a Self-propelled Barge Ship Model. J. Mar. Sci. Appl. 2018, 17, 165–172. [Google Scholar] [CrossRef]
- Hao, W.U.; Yongpeng, O.; Qing, Y.E. Experimental study of air layer drag reduction on a flat plate and bottom hull of a ship with cavity. Ocean Eng. 2019, 183, 236–248. [Google Scholar] [CrossRef]
- Matveev, K.I. Simplified model for unsteady air cavities under ship hulls. Proc. Inst. Mech. Eng. M 2020, 234, 100–107. [Google Scholar] [CrossRef]
- Kim, H.; Park, S. Coupled Level-Set and Volume of Fluid (CLSVOF) Solver for Air Lubrication Method of a Flat Plate. J. Mar. Sci. Eng. 2021, 9, 231. [Google Scholar] [CrossRef]
- Matveev, K.I. Computational Simulations of Wide-Beam Air-Cavity Hull in Waves. J. Ship Prod. Des. 2022, 38, 183–192. [Google Scholar] [CrossRef]
- Chang, H.; Wang, C.; Liu, Z.; Feng, B.; Zhan, C.; Cheng, X. Research on the Karhunen–Loève Transform Method and Its Application to Hull Form Optimization. J. Mar. Sci. Eng. 2023, 11, 230. [Google Scholar] [CrossRef]
- Liu, X.; Wan, D.; Lei, L. Multi-fidelity model and reduced-order method for comprehensive hydrodynamic performance optimization and prediction of JBC ship. Ocean Eng. 2023, 267, 113321. [Google Scholar] [CrossRef]
- Bernardino, M.; Gonçalves, M.; Campos, R.M.; Guedes Soares, C. Extremes and variability of wind and waves across the oceans until the end of the 21st century. Ocean Eng. 2023, 275, 114081. [Google Scholar] [CrossRef]
- Gaidai, O.; Wang, K.; Wang, F.; Xing, Y.; Yan, P. Cargo ship aft panel stresses prediction by deconvolution. Mar. Struct. 2023, 88, 103359. [Google Scholar] [CrossRef]
- Zhao, W.; Han, F.; Qiu, X.; Peng, X.; Zhao, Y.; Zhang, J. Research on the identification and distribution of biofouling using underwater cleaning robot based on deep learning. Ocean Eng. 2023, 273, 113909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadros, M.; Ventura, M.; Guedes Soares, C. Review of the Decision Support Methods Used in Optimizing Ship Hulls towards Improving Energy Efficiency. J. Mar. Sci. Eng. 2023, 11, 835. https://doi.org/10.3390/jmse11040835
Tadros M, Ventura M, Guedes Soares C. Review of the Decision Support Methods Used in Optimizing Ship Hulls towards Improving Energy Efficiency. Journal of Marine Science and Engineering. 2023; 11(4):835. https://doi.org/10.3390/jmse11040835
Chicago/Turabian StyleTadros, Mina, Manuel Ventura, and C. Guedes Soares. 2023. "Review of the Decision Support Methods Used in Optimizing Ship Hulls towards Improving Energy Efficiency" Journal of Marine Science and Engineering 11, no. 4: 835. https://doi.org/10.3390/jmse11040835
APA StyleTadros, M., Ventura, M., & Guedes Soares, C. (2023). Review of the Decision Support Methods Used in Optimizing Ship Hulls towards Improving Energy Efficiency. Journal of Marine Science and Engineering, 11(4), 835. https://doi.org/10.3390/jmse11040835