Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for Detection of Heavy Metal Cu2+ Ions in Seawater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Cs3Bi2Br9
2.3. Control Experiment
2.4. Photostability and Water Stability Experiment
2.5. Sensitivity and Selectivity of Cu2+ Detection
2.6. Characterization
3. Results and Discussion
3.1. Effects of Different Conditions on the Fluorescent Properties of Cs3Bi2Br9
3.2. Characterization of Cs3Bi2Br9 PeQDs
3.3. Optical Properties of Cs3Bi2Br9 PeQDs
3.4. Photostability and Water Stability
3.5. Performance at Different Temperatures
3.6. Detection Performance of Cs3Bi2Br9 for Copper Ions
3.7. Detection in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biswas, H.; Bandyopadhyay, D.; Waite, A. Copper Addition Helps Alleviate Iron Stress in a Coastal Diatom: Response of Chaetoceros Gracilis from the Bay of Bengal to Experimental Cu and Fe Addition. Mar. Chem. 2013, 157, 224–232. [Google Scholar] [CrossRef]
- Jacquot, J.E.; Kondo, Y.; Knapp, A.N.; Moffett, J.W. The Speciation of Copper across Active Gradients in Nitrogen-Cycle Processes in the Eastern Tropical South Pacific. Limnol. Oceanogr. 2013, 58, 1387–1394. [Google Scholar] [CrossRef]
- Bruland, K.W.; Lohan, M.C. Controls of Trace Metals in Seawater. Ocean. Mar. Geochem. 2006, 6, 23–47. [Google Scholar]
- Huang, W.; Zhou, Y.; Zhao, T.; Tan, L.; Wang, J. The Effects of Copper Ions and Copper Nanomaterials on the Output of Amino Acids from Marine Microalgae. Environ. Sci. Pollut. Res. 2022, 29, 9780–9791. [Google Scholar] [CrossRef]
- Mandich, M. Ranked Effects of Heavy Metals on Marine Bivalves in Laboratory Mesocosms: A Meta-Analysis. Mar. Pollut. Bull. 2018, 131, 773–781. [Google Scholar] [CrossRef]
- Malhotra, N.; Ger, T.-R.; Uapipatanakul, B.; Huang, J.-C.; Chen, K.H.-C.; Hsiao, C.-D. Review of Copper and Copper Nanoparticle Toxicity in Fish. Nanomaterials 2020, 10, 1126. [Google Scholar] [CrossRef]
- Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, Zinc and Iron in Neurodegenerative Diseases (Alzheimer’s, Parkinson’s and Prion Diseases). Coord. Chem. Rev. 2012, 256, 2129–2141. [Google Scholar] [CrossRef]
- Brewer, G.J.; Kanzer, S.H.; Zimmerman, E.A.; Celmins, D.F.; Heckman, S.M.; Dick, R. Copper and Ceruloplasmin Abnormalities in Alzheimer’s Disease. Am. J. Alzheimers Dis. Other Dement. 2010, 25, 490–497. [Google Scholar] [CrossRef]
- Hu, H.; Jin, Q.; Kavan, P. A Study of Heavy Metal Pollution in China: Current Status, Pollution-Control Policies and Countermeasures. Sustainability 2014, 6, 5820–5838. [Google Scholar] [CrossRef]
- Song, Y.; Ma, Q.; Cheng, H.; Liu, J.; Wang, Y. Simultaneous Enrichment of Inorganic and Organic Species of Lead and Mercury in Pg L-1 Levels by Solid Phase Extraction Online Combined with High Performance Liquid Chromatography and Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta 2021, 1157, 338388. [Google Scholar] [CrossRef]
- Bacon, J.R.; Butler, O.T.; Cairns, W.R.L.; Cook, J.M.; Mertz-Kraus, R.; Tyson, J.F. Atomic Spectrometry Update—A Review of Advances in Environmental Analysis. J. Anal. At. Spectrom. 2019, 34, 9–58. [Google Scholar] [CrossRef]
- Nguyen, T.T.K.; Luu, H.T.; Vu, L.D.; Ta, T.T.; Le, G.T.H. Determination of Total Mercury in Solid Samples by Anodic Stripping Voltammetry. J. Chem. 2021, 2021, 8888879. [Google Scholar] [CrossRef]
- Alharthi, S.S.; Fallatah, A.M.; Al-Saidi, H.M. Design and Characterization of Electrochemical Sensor for the Determination of Mercury(II) Ion in Real Samples Based upon a New Schiff Base Derivative as an Ionophore. Sensors 2021, 21, 3020. [Google Scholar] [CrossRef]
- Lim, J.W.; Kim, T.-Y.; Woo, M.-A. Trends in Sensor Development toward Next-Generation Point-of-Care Testing for Mercury. Biosens. Bioelectron. 2021, 183, 113228. [Google Scholar] [CrossRef] [PubMed]
- Mattio, E.; Robert-Peillard, F.; Vassalo, L.; Branger, C.; Margaillan, A.; Brach-Papa, C.; Knoery, J.; Boudenne, J.-L.; Coulomb, B. 3D-Printed Lab-on-Valve for Fluorescent Determination of Cadmium and Lead in Water. Talanta 2018, 183, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.-J.; Zhu, J.-C.; Zhao, M.; Wang, Y.; Yang, P.; He, J. Ultrasensitive Photoelectrochemical Aptasensor for Lead Ion Detection Based on Sensitization Effect of CdTe QDs on MoS2-CdS:Mn Nanocomposites by the Formation of G-Quadruplex Structure. Talanta 2018, 183, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Dumbare, S.; Doshi, A.; Ravindran, S. Rhodamine B and Rhodamine 6G Based Sensing of Copper Ions in Environmental and Biological Samples: Recent Progress. Pol. J. Environ. Stud. 2021, 30, 3445–3455. [Google Scholar] [CrossRef]
- Zhang, L.; Shang, L.; Dong, S. Sensitive and Selective Determination of Cu2+ by Electrochemiluminescence of CdTe Quantum Dots. Electrochem. Commun. 2008, 10, 1452–1454. [Google Scholar] [CrossRef]
- Rana, M.; Devlal, K. Thioglycolic Acid Capped CdTe Quantum Dots as Sensors for the Detection of Hazardous Heavy Metal Ion Cu2+ in Water. MAPAN-J. Metrol. Soc. India 2022, 37, 41–46. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Han, J.; Li, R.; Huang, M. Stepwise Synthesis of Au@CdS-CdS Nanoflowers and Their Enhanced Photocatalytic Properties. Nanoscale Res. Lett. 2019, 14, 148. [Google Scholar] [CrossRef]
- Cui, S.; Xu, S.; Song, H.; Xu, W.; Chen, X.; Zhou, D.; Yin, Z.; Han, W. Highly Sensitive and Selective Detection of Mercury Ions Based on Up-Conversion FRET from NaYF4:Yb3+/Er3+ Nanophosphors to CdTe Quantum Dots. RSC Adv. 2015, 5, 99099–99106. [Google Scholar] [CrossRef]
- Nisha, K.D.; Navaneethan, M.; Dhanalakshmi, B.; Murali, K.S.; Hayakawa, Y.; Ponnusamy, S.; Muthamizhchelvan, C.; Gunasekaran, P. Effect of Organic-Ligands on the Toxicity Profiles of CdS Nanoparticles and Functional Properties. Colloid Surf. B-Biointerfaces 2015, 126, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Paithankar, J.G.; Kushalan, S.; Nijil, S.; Hegde, S.; Kini, S.; Sharma, A. Systematic Toxicity Assessment of CdTe Quantum Dots in Drosophila Melanogaster. Chemosphere 2022, 295, 133836. [Google Scholar] [CrossRef] [PubMed]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Liu, B.; Wang, G.; Lu, Y.; Wang, W.; Liu, Z.; Li, J. Zinc Borosilicate Glass-Stabilized CsPbX3 (X = Cl, Br, I) Perovskite Quantum Dots for Photoluminescence Lighting and Display Applications. ACS Appl. Nano Mater. 2022, 5, 9503–9513. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Wang, F.; Chen, J.; Kong, J.; Li, L.; Xu, J.; Zhang, Y. Flexible Cesium Lead Halide CsPbX3@SiO2 (X = Cl, Br, I and Their Mixtures) Perovskite Nanocrystal Films. J. Alloy. Compd. 2022, 925, 166551. [Google Scholar] [CrossRef]
- Li, M.; Zeng, Y.; Qu, X.; Jalalah, M.; Alsareii, S.A.; Li, C.; Harraz, F.A.; Li, G. Biocatalytic CsPbX3 Perovskite Nanocrystals: A Self-Reporting Nanoprobe for Metabolism Analysis. Small 2021, 17, 2103255. [Google Scholar] [CrossRef]
- Zhong, Q.; Liu, J.; Chen, S.; Li, P.; Chen, J.; Guan, W.; Qiu, Y.; Xu, Y.; Cao, M.; Zhang, Q. Highly Stable CsPbX3/PbSO4 Core/Shell Nanocrystals Synthesized by a Simple Post-Treatment Strategy. Adv. Opt. Mater. 2021, 9, 2001763. [Google Scholar] [CrossRef]
- Shang, Y.; Li, G.; Liu, W.; Ning, Z. Quasi-2D Inorganic CsPbBr3 Perovskite for Efficient and Stable Light-Emitting Diodes. Adv. Funct. Mater. 2018, 28, 1801193. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, S.; Liu, Z.; Yu, K.; Wang, C.; Wu, S.; Wang, J.; Pan, X. Fluorescence Enhanced Microfluidic Sensor with CsPbI3 Probe for Lubricant Copper Ions On-Site Rapid Detection Based on SiO2 Inverse Opal Photonic Crystals. J. Lumin. 2021, 238, 118276. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, X.; Zhu, T.; Deng, M.; Ikechukwu, I.P.; Huang, W.; Yin, G.; Bai, Y.; Qu, D.; Huang, X.; et al. All-Inorganic CsPbBr3 Perovskite Quantum Dots as a Photoluminescent Probe for Ultrasensitive Cu2+ Detection. J. Mater. Chem. C 2018, 6, 4793–4799. [Google Scholar] [CrossRef]
- Sheng, X.; Liu, Y.; Wang, Y.; Li, Y.; Wang, X.; Wang, X.; Dai, Z.; Bao, J.; Xu, X. Cesium Lead Halide Perovskite Quantum Dots as a Photoluminescence Probe for Metal Ions. Adv. Mater. 2017, 29, 1700150. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, K.P.O.; Chang, C.-Y.; Hong, W.-L.; Wen, T.-H.; Lo, P.-H.; Chiu, H.-Z.; Hsu, C.-L.; Horng, S.-F.; Chao, Y.-C. Lead-Free Cesium Tin Halide Nanocrystals for Light-Emitting Diodes and Color down Conversion. RSC Adv. 2020, 10, 37161–37167. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Song, W.; Li, Q.; Zhao, X.; He, D.; Quan, Z. Synthesis of Lead-Free CsGeI3 Perovskite Colloidal Nanocrystals and Electron Beam-Induced Transformations. Chem.-Asian J. 2018, 13, 1654–1659. [Google Scholar] [CrossRef]
- Dolzhnikov, D.S.; Wang, C.; Xu, Y.; Kanatzidis, M.G.; Weiss, E.A. Ligand-Free, Quantum-Confined Cs2SnI6 Perovskite Nanocrystals. Chem. Mat. 2017, 29, 7901–7907. [Google Scholar] [CrossRef]
- Tan, Z.; Li, J.; Zhang, C.; Li, Z.; Hu, Q.; Xiao, Z.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; et al. Highly Efficient Blue-Emitting Bi-Doped Cs2SnCl6 Perovskite Variant: Photoluminescence Induced by Impurity Doping. Adv. Funct. Mater. 2018, 28, 1801131. [Google Scholar] [CrossRef]
- Song, T.-B.; Yokoyama, T.; Aramaki, S.; Kanatzidis, M.G. Performance Enhancement of Lead-Free Tin Based Perovskite Solar Cells with Reducing Atmosphere-Assisted Dispersible Additive. ACS Energy Lett. 2017, 2, 897–903. [Google Scholar] [CrossRef]
- Leng, M.; Yang, Y.; Zeng, K.; Chen, Z.; Tan, Z.; Li, S.; Li, J.; Xu, B.; Li, D.; Hautzinger, M.P.; et al. All-Inorganic Bismuth-Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability. Adv. Funct. Mater. 2018, 28, 1704446. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Huang, Y.; Lai, J.; Li, H.; Yang, J.; Tian, C.; He, P.; Huang, Q.; Tang, X. Lead-Free Perovskite Cs2AgBiX6 Nanocrystals with a Band Gap Funnel Structure for Photocatalytic CO2 Reduction under Visible Light. Chem. Mat. 2021, 33, 4971–4976. [Google Scholar] [CrossRef]
- Connor, B.A.; Leppert, L.; Smith, M.D.; Neaton, J.B.; Karunadasa, H.I. Layered Halide Double Perovskites: Dimensional Reduction of Cs2AgBiBr6. J. Am. Chem. Soc. 2018, 140, 5235–5240. [Google Scholar] [CrossRef]
- Fang, H.-H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even, J.; Loi, M.A. Photoexcitation Dynamics in Solution-Processed Formamidinium Lead Iodide Perovskite Thin Films for Solar Cell Applications. Light-Sci. Appl. 2016, 5, e16056. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.D.; Verdi, C.; Milot, R.L.; Eperon, G.E.; Perez-Osorio, M.A.; Snaith, H.J.; Giustino, F.; Johnston, M.B.; Herz, L.M. Electron-Phonon Coupling in Hybrid Lead Halide Perovskites. Nat. Commun. 2016, 7, 11755. [Google Scholar] [CrossRef]
- Lu, L.; Tan, T.; Tian, X.; Li, Y.; Deng, P. Visual and Sensitive Fluorescent Sensing for Ultratrace Mercury Ions by Perovskite Quantum Dots. Anal. Chim. Acta 2017, 986, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Pan, X.; Xu, S.; Liu, Z.; Wang, J.; Yu, K.; Wang, C.; Yuan, H.; Wu, S. Fluorescence-Enhanced Microfluidic Sensor for Highly Sensitive in-Situ Detection of Copper Ions in Lubricating Oil. Mater. Des. 2020, 191, 108693. [Google Scholar] [CrossRef]
- Chan, Y.; Chen, J.; Liu, Q.; Wark, S.E.; Son, D.H.; Batteas, J.D. Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced and Photo-Brightened Luminescence of CdSe Quantum Dots. Anal. Chem. 2010, 82, 3671–3678. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, H.; Quan, X.; Chen, S.; Yu, H. Signal Amplification via Cation Exchange Reaction: An Example in the Ratiometric Fluorescence Probe for Ultrasensitive and Selective Sensing of Cu(II). Chem. Commun. 2010, 46, 1144–1146. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Wang, H.; Li, Y.; Pan, Z.; Jia, W. Electochemiluminescence of CdTe/CdS Quantum Dots with Triproprylamine as Coreactant in Aqueous Solution at a Lower Potential and Its Application for Highly Sensitive and Selective Detection of Cu2+. Electroanalysis 2010, 22, 155–160. [Google Scholar] [CrossRef]
- Wang, P.; Ma, X.; Su, M.; Hao, Q.; Lei, J.; Ju, H. Cathode Photoelectrochemical Sensing of Copper(II) Based on Analyte-Induced Formation of Exciton Trapping. Chem. Commun. 2012, 48, 10216–10218. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Han, J. Fluorescent Chemosensors for Copper(II) Ion: Structure, Mechanism and Application. J. Photochem. Photobiol. C-Photochem. Rev. 2017, 32, 78–103. [Google Scholar] [CrossRef]
Probe | Toxicity | Ligand | Sample Solvent | LOD (nM) | Ref. |
---|---|---|---|---|---|
CdSe | Cadmium-Toxicity | 16-mercaptohexadecanoic acid (16-MHA) | aqueous | 5 | [45] |
CdTe nanorods | Cadmium-Toxicity | Thioglycolic acid (TGA) | aqueous | 7.8 | [46] |
CdTe/CdS | Cadmium-Toxicity | 3-mercaptopropionic acid (MPA) | aqueous | 6.1 | [47] |
CdTe | Cadmium-Toxicity | Meso-2,3-dimercaptosuccinic acid (DMSA) | aqueous | 5.9 | [48] |
CdTe/CdS | Cadmium-Toxicity | Glyp | aqueous | 20 | [49] |
CsPbBr3 | Lead-Toxicity | Oleic acid | Oil | 2 | [32] |
CsPbBr3 | Lead-Toxicity | Oleic acid | Hexane | 0.1 | [31] |
CsPbI3/SiO2 IOPCs | Lead-Toxicity | Oleic acid | Oil | 0.25/0.34 | [30] |
Cs3Bi2Br9 | Eco-Friendly | Oleic acid | aqueous | 98.3 | This work |
Samples | Added (nM) | Measured (nM) | Recovery (%) |
---|---|---|---|
Drinking water | 500 | 493.4 | 98.7% |
1000 | 1014.8 | 101.5% | |
2000 | 2016.5 | 100.9% | |
Seawater | 500 | 519.8 | 104.0% |
1000 | 1035.4 | 103.5% | |
2000 | 2047.8 | 102.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Chen, B. Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for Detection of Heavy Metal Cu2+ Ions in Seawater. J. Mar. Sci. Eng. 2023, 11, 1001. https://doi.org/10.3390/jmse11051001
Gao Y, Chen B. Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for Detection of Heavy Metal Cu2+ Ions in Seawater. Journal of Marine Science and Engineering. 2023; 11(5):1001. https://doi.org/10.3390/jmse11051001
Chicago/Turabian StyleGao, Yuefeng, and Baojiu Chen. 2023. "Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for Detection of Heavy Metal Cu2+ Ions in Seawater" Journal of Marine Science and Engineering 11, no. 5: 1001. https://doi.org/10.3390/jmse11051001
APA StyleGao, Y., & Chen, B. (2023). Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for Detection of Heavy Metal Cu2+ Ions in Seawater. Journal of Marine Science and Engineering, 11(5), 1001. https://doi.org/10.3390/jmse11051001