A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide
Abstract
:1. Introduction
2. Model Description
2.1. Computational Domain and Assumptions
- (1)
- All gases were assumed to be ideal;
- (2)
- The flow was assumed to be incompressible and laminar;
- (3)
- The electrochemical reactions occur in the active layers;
- (4)
- The interconnector material was assumed to be impermeable;
- (5)
- Radiation heat transfer was neglected.
2.2. Governing Equations
2.3. Boundary Conditions
2.4. Model Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.; Wang, Z.; Xie, S.; Zhang, M.; Ouyang, T. A novel design of power-cooling cogeneration system driven by solid oxide fuel cell waste heat in ocean-going vessels. J. Clean. Prod. 2021, 318, 128532. [Google Scholar] [CrossRef]
- Guan, W.; Chen, J.; Chen, L.; Cao, J.; Fan, H. Safe Design of a Hydrogen-Powered Ship: CFD Simulation on Hydrogen Leakage in the Fuel Cell Room. J. Mar. Sci. Eng. 2023, 11, 651. [Google Scholar] [CrossRef]
- Cavo, M.; Gadducci, E.; Rattazzi, D.; Rivarolo, M.; Magistri, L. Dynamic analysis of PEM fuel cells and metal hydrides on a zero-emission ship: A model-based approach. Int. J. Hydrogen Energy 2021, 46, 32630–32644. [Google Scholar] [CrossRef]
- Ababneh, H.; Hameed, B.H. Electrofuels as emerging new green alternative fuel: A review of recent literature. Energy Convers. Manag. 2022, 254, 115213. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Han, M. Industrial Development Status and Prospects of the Marine Fuel Cell: A Review. J. Mar. Sci. Eng. 2023, 11, 238. [Google Scholar] [CrossRef]
- Shim, H.; Kim, Y.H.; Hong, J.; Hwang, D.; Kang, H.J. Marine Demonstration of Alternative Fuels on the Basis of Propulsion Load Sharing for Sustainable Ship Design. J. Mar. Sci. Eng. 2023, 11, 567. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.G.; Abdelkareem, M.A.; Alahmer, A.; Sayed, E.T. Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization. J. Mar. Sci. Eng. 2023, 11, 617. [Google Scholar] [CrossRef]
- Hu, K.; Fang, J.; Ai, X.; Huang, D.; Zhong, Z.; Yang, X.; Wang, L. Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling. Appl. Energy 2022, 312, 118788. [Google Scholar] [CrossRef]
- Ni, M. An electrochemical model for syngas production by co-electrolysis of H2O and CO2. J. Power Sources 2012, 202, 209–216. [Google Scholar] [CrossRef]
- Ni, M. 2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis. Int. J. Hydrogen Energy 2012, 37, 6389–6399. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, Y.; Li, W.; Cai, N. Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide. Energy 2014, 70, 420–434. [Google Scholar] [CrossRef]
- Xie, Y.; Xue, X. Modeling of solid oxide electrolysis cell for syngas generation with detailed surface chemistry. Solid State Ion 2012, 224, 64–73. [Google Scholar] [CrossRef]
- Du, Y.; Qin, Y.; Zhang, G.; Yin, Y.; Jiao, K.; Du, Q. Modelling of effect of pressure on co-electrolysis of water and carbon dioxide in solid oxide electrolysis cell. Int. J. Hydrogen Energy 2019, 44, 3456–3469. [Google Scholar] [CrossRef]
- Kazempoor, P.; Braun, R.J. Model validation and performance analysis of regenerative solid oxide cells: Electrolytic operation. Int. J. Hydrogen Energy 2014, 39, 2669–2684. [Google Scholar] [CrossRef]
- Ni, M.; LEUNG, M.; LEUNG, D. Parametric study of solid oxide steam electrolyzer for hydrogen production. Int. J. Hydrogen Energy 2007, 32, 2305–2313. [Google Scholar] [CrossRef]
- Menon, V.; Fu, Q.; Janardhanan, V.M.; Deutschmann, O. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis. J. Power Sources 2015, 274, 768–781. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Luo, Y.; Cai, N. Elementary reaction modeling of CO2/H2O co-electrolysis cell considering effects of cathode thickness. J. Power Sources 2013, 243, 118–130. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Ni, M.; Zhan, R.; Du, Q.; Jiao, K. Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell. Appl. Therm. Eng. 2020, 172, 114959. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, Z.; Zhou, M. Three-Dimensional Modeling and Performance Study of High Temperature Solid Oxide Electrolysis Cell with Metal Foam. Sustainability 2022, 14, 7064. [Google Scholar] [CrossRef]
- Lin, Z.; Stevenson, J.W.; Khaleel, M.A. The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs. J. Power Sources 2003, 117, 92–97. [Google Scholar] [CrossRef]
- Jeon, D.H.; Nam, J.H.; Kim, C. Microstructural Optimization of Anode-Supported Solid Oxide Fuel Cells by a Comprehensive Microscale Model. J. Electrochem. Soc. 2006, 153, A406–A417. [Google Scholar] [CrossRef]
- Kong, W.; Li, J.; Liu, S.; Lin, Z. The influence of interconnect ribs on the performance of planar solid oxide fuel cell and formulae for optimal rib sizes. J. Power Sources 2012, 204, 106–115. [Google Scholar] [CrossRef]
- Liu, S.; Kong, W.; Lin, Z. Three-dimensional modeling of planar solid oxide fuel cells and the rib design optimization. J. Power Sources 2009, 194, 854–863. [Google Scholar] [CrossRef]
- Costamagna, P.; Honegger, K. Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization. J. Electrochem. Soc. 1998, 145, 3995–4007. [Google Scholar] [CrossRef]
- Park, J.; Bae, J. Characterization of electrochemical reaction and thermo-fluid flow in metal-supported solid oxide fuel cell stacks with various manifold designs. Int. J. Hydrogen Energy 2012, 37, 1717–1730. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Shi, Y.; Cai, N. Performance and methane production characteristics of H2O-CO2 co-electrolysis in solid oxide electrolysis cells. Int. J. Hydrogen Energy 2013, 38, 11104–11109. [Google Scholar] [CrossRef]
- Khazaee, I.; Rava, A. Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries. Energy 2017, 119, 235–244. [Google Scholar] [CrossRef]
- Lin, B.; Shi, Y.; Cai, N. Numerical simulation of cell-to-cell performance variation within a syngas-fuelled planar solid oxide fuel cell stack. Appl. Therm. Eng. 2017, 114, 653–662. [Google Scholar] [CrossRef]
- Andersson, M.; Yuan, J.; Sundén, B. SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. J. Power Sources 2013, 232, 42–54. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, W.; Ji, S.; Sun, A.; Shuai, W.; Zheng, N.; Han, Y.; Xiao, G.; Ni, M.; Xu, H. Dynamic behavior of high-temperature CO2/H2O co-electrolysis coupled with real fluctuating renewable power. Sustain. Energy Technol. Assess. 2022, 52, 102344. [Google Scholar] [CrossRef]
- Ni, M. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energy Convers. Manag. 2013, 70, 116–129. [Google Scholar] [CrossRef]
- Haberman, B.A.; Young, J.B. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. Int. J. Heat Mass Transf. 2004, 47, 3617–3629. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Y.; Shi, Y.; Cai, N. Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis. Appl. Energy 2020, 268, 114927. [Google Scholar] [CrossRef]
- Suwanwarangkul, R.; Croiset, E.; Fowler, M.W.; Douglas, P.L.; Entchev, E.; Douglas, M.A. Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode. J. Power Sources 2003, 122, 9–18. [Google Scholar] [CrossRef]
- Li, S.; Yang, Z.; Liu, Y.; Shen, Q.; Yang, G.; Sunden, B.A. Analysis of heat and mass transport characteristics in microchannel reactors with non-uniform catalyst distributions for hydrogen production. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 3191–3209. [Google Scholar] [CrossRef]
- Yakabe, H.; Hishinuma, M.; Uratani, M.; Matsuzaki, Y.; Yasuda, I. Evaluation and modeling of performance of anode-supported solid oxide fuel cell. J. Power Sources 2000, 86, 423–431. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Luo, Y.; Cai, N. Elementary reaction modeling of solid oxide electrolysis cells: Main zones for heterogeneous chemical/electrochemical reactions. J. Power Sources 2015, 273, 1–13. [Google Scholar] [CrossRef]
- Todd, B.; Young, J.B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling. J. Power Sources 2002, 110, 186–200. [Google Scholar] [CrossRef]
- Kornely, M.; Leonide, A.; Weber, A.; Ivers-Tiffée, E. Performance limiting factors in anode-supported cells originating from metallic interconnector design. J. Power Sources 2011, 196, 7209–7216. [Google Scholar] [CrossRef]
- Fu, Q.; Li, Z.; Wei, W.; Liu, F.; Xu, X.; Liu, Z. Performance enhancement of a beam and slot interconnector for anode-supported SOFC stack. Energy Convers. Manag. 2021, 241, 114277. [Google Scholar] [CrossRef]
- Ebbesen, S.D.; Graves, C.; Mogensen, M. Production of Synthetic Fuels by Co-Electrolysis of Steam and Carbon Dioxide. Int. J. Green Energy 2009, 6, 646–660. [Google Scholar] [CrossRef]
- Ebbesen, S.D.; Knibbe, R.; Mogensen, M. Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells. J. Electrochem. Soc. 2012, 159, F482–F489. [Google Scholar] [CrossRef]
- Graves, C.; Ebbesen, S.D.; Mogensen, M. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability. Solid State Ion 2011, 192, 398–403. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Cell length (Lcell, mm) | 40 |
Cell width (Wcell, mm) | 2 |
Channel height (Hchannel, mm) | 1 |
Interconnector width (Wic, mm) | 2 |
Interconnector height (Hic, mm) | 1.5 |
Porous electrode length (Lporous, mm) | 40 |
Porous electrode width (Wporous, mm) | 2 |
CSL thickness (δCSL, μm) | 300 |
AAL thickness (δAAL, μm) | 15 |
CAL thickness (δCAL, μm) | 10 |
Electrolyte thickness (δEL, μm) | 10 |
Source Terms | Unit |
---|---|
kg m−3 s−1 | |
kg m−3 s−1 | |
kg m−3 s−1 | |
kg m−3 s−1 | |
kg m−3 s−1 | |
kg m−3 s−1 | |
kg m−3 s−1 | |
kg m−2 s−2 | |
W m−3 | |
A m−3 | |
A m−3 |
Parameters | Cathode | Anode | Electrolyte |
---|---|---|---|
Thermal conductivity (W m−1 K−1) | 11 | 6 | 2.7 |
Density (kg m−3) | 3310 | 3030 | 5160 |
Specific heat capacity (J kg−1 K−1) | 450 | 430 | 470 |
Parameters | Value |
---|---|
Cathode charge transfer coefficient, | 0.65 |
Anode charge transfer coefficient, | 0.65 |
Cathode tortuosity, τc | 3 |
Anode tortuosity, τa | 3 |
Porosity | 0.36 |
Exponent for exchange current density, m/n/k | 0.5/0.5/0.25 |
Gas stoichiometry ratio, ξa/ξc | 1.5/1.5 |
Activation energy Eact,c/Eact,a, J mol−1 | 120,000/120,000 |
Cathode effective reaction specific surface area Sact,c, m2 m−3 | 2.14 × 105 |
Anode effective reaction specific surface area Sact,a, m2 m−3 | 2.14 × 105 |
Operating pressure (atm) | 1.0 |
Operating temperature (K) | 1073 |
Cathode gas composition | 45 vol% H2O, 45 vol% CO2, 10 vol% H2 |
Anode gas composition | Air (21 vol% O2, 79 vol% N2) |
drib (mm) | dpitch (mm) | |
---|---|---|
CASE A | 0.2 | 1 |
CASE B | 0.3 | 1 |
CASE C | 0.4 | 1 |
CASE D | 0.5 | 1 |
CASE E | 0.6 | 1 |
CASE F | 0.7 | 1 |
CASE G | 0.8 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yang, Z.; Shen, Q.; Yang, G. A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide. J. Mar. Sci. Eng. 2023, 11, 1066. https://doi.org/10.3390/jmse11051066
Li S, Yang Z, Shen Q, Yang G. A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide. Journal of Marine Science and Engineering. 2023; 11(5):1066. https://doi.org/10.3390/jmse11051066
Chicago/Turabian StyleLi, Shian, Zhi Yang, Qiuwan Shen, and Guogang Yang. 2023. "A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide" Journal of Marine Science and Engineering 11, no. 5: 1066. https://doi.org/10.3390/jmse11051066
APA StyleLi, S., Yang, Z., Shen, Q., & Yang, G. (2023). A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide. Journal of Marine Science and Engineering, 11(5), 1066. https://doi.org/10.3390/jmse11051066