Modeling Impact Load on a Vertical Cylinder in Dam-Break Flows
Abstract
:1. Introduction
2. Numerical Methodology
2.1. Governing Equations
2.2. Turbulence Model
2.3. Free Surface Tracking
2.4. Solver and Algorithm
3. Validations and Discussions
3.1. Computional Domain
3.2. Grid Independence Analysis
3.3. A Dam-Break Flow Interacting with a Vertical Wall
3.4. A Dam-Break Flow Interacting with a Vertical Slender Cylinder
3.4.1. Pressure on the Cylinder
3.4.2. Free Surface Profile
4. The Effect of the Structural Geometry and the Impacting Angle
4.1. The Effect of the Structural Geometry
4.2. The Effect of the Impacting Angle
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stansby, P.K.; Chegini, A.; Barnes, T.C.D. The initial stages of dam-break flow. J. Fluid Mech. 1998, 374, 407–424. [Google Scholar] [CrossRef]
- Li, Y.L.; Ma, Y.; Deng, R.; Jiang, D.P.; Hu, Z. Research on dam-break induced tsunami bore acting on the triangular breakwater based on high order 3D CLSVOF-THINC/WLIC-IBM approaching. Ocean. Eng. 2019, 182, 645–659. [Google Scholar] [CrossRef]
- Stoker, J.J. Water Waves: The Mathematical Theory with Applications; Interscience: New York, NY, USA, 1957. [Google Scholar]
- Kawashima, K.; Buckle, I. Structural performance of bridges in the tohoku-oki earthquake. Earthq. Spectra 2013, 29, S315–S338. [Google Scholar] [CrossRef]
- Health and Safety Executive (HSE). Findings of an Expert Panel Engaged to Conduct a Scoping Study on Survival Design of Floating Production Storage and Offloading Vessels against Extreme Ocean Conditions; Research Report; No 357; Health and Safety Executive (HSE): Merseyside, UK, 2005.
- Hogg, A.J.; Woods, A.W. The transition from inertia- to bottom-drag-dominated motion of turbulent gravity currents. J. Fluid Mech. 2001, 449, 201–224. [Google Scholar] [CrossRef]
- Hogg, A.J.; Pritchard, D. The effects of hydraulic resistance on dam-break and other shallow inertial flows. J. Fluid Mech. 2004, 501, 179–212. [Google Scholar] [CrossRef]
- Ritter, A. Die fortpflanzung der wasserwellen zeitschrift des vereins. Dtsch. Ing. Zeitswchrift 1982, 36, 947–954. [Google Scholar]
- Ungarish, M. A simple model for the reflection by a vertical barrier of a dambreak flow over a dry or pre-wetted bottom. J. Fluid Mech. 2022, 942, R6. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Zhang, J.M. Analytical and Experimental Investigations of Dam-Break Flows in Triangular Channels with Wet-Bed Conditions. J. Hydraul. Eng. 2020, 146, 04020070. [Google Scholar] [CrossRef]
- Cumberbatch, E. The impact of a water wedge on a wall. J. Fluid Mech. 1960, 7, 353–374. [Google Scholar] [CrossRef]
- Cross, R.H. Tsunami surge forces. J. Waterw. Harb. Div. 1967, 93, 201–231. [Google Scholar] [CrossRef]
- Kihara, N.; Niida, Y.; Takabatake, D.; Kaida, H.; Shibayama, A.; Miyagawa, Y. Large-scale experiments on tsunami-induced pressure on a vertical tide wall. Coast. Eng. 2015, 99, 46–63. [Google Scholar] [CrossRef]
- Raju, K.G.R.; Asawa, G.L.; Rana, O.P.S.; Pillai, A.S.N. Rational assessment of blockage effect in channel flow past smooth circular-cylinders. J. Hydraul. Res. 1983, 21, 289–302. [Google Scholar] [CrossRef]
- Qi, Z.X.; Eames, I.; Johnson, E.R. Force acting on a square cylinder fixed in a free-surface channel flow. J. Fluid Mech. 2014, 756, 716–727. [Google Scholar] [CrossRef]
- Vosoughi, F.; Nikoo, M.R.; Rakhshanderhroo, G. Downstream semi-circular obstacles’ influence on floods arising from the failure of dams with different levels of reservoir silting. Phys. Fluids 2022, 34, 013312. [Google Scholar] [CrossRef]
- Liu, W.J.; Wang, B.; Guo, Y.K.; Zhang, J.M.; Chen, Y.L. Experimental investigation on the effects of bed slope and tailwater on dam-break flows. J. Hydrol. 2020, 590, 125256. [Google Scholar] [CrossRef]
- Kleefsman, K.M.T.; Fekken, G.; Veldman, A.E.P.; Iwanowski, B.; Buchner, B. A volume-of-fluid based simulation method for wave impact problems. J. Comput. Phys. 2005, 206, 363–393. [Google Scholar] [CrossRef]
- Lobovsky, L.; Botia-Vera, E.; Castellana, F.; Mas-Soler, J.; Souto-Iglesias, A. Experimental investigation of dynamic pressure loads during dam break. J. Fluids Struct. 2014, 48, 407–434. [Google Scholar] [CrossRef]
- Rajaie, M.; Azimi, A.H.; Nistor, I.; Rennie, C.D. Experimental Investigations on Hydrodynamic Characteristics of Tsunami-Like Hydraulic Bores Impacting a Square Structure. J. Hydraul. Eng. 2022, 148, 04021061. [Google Scholar] [CrossRef]
- Ye, Z.T.; Zhao, X.Z.; Deng, Z.Z. Numerical investigation of the gate motion effect on a dam break flow. J. Mar. Sci. Technol. 2016, 21, 579–591. [Google Scholar] [CrossRef]
- Kamra, M.M.; Al Salami, J.; Sueyoshi, M.; Hu, C.H. Experimental study of the interaction of dam break with a vertical cylinder. J. Fluids Struct. 2019, 86, 185–199. [Google Scholar] [CrossRef]
- Liu, W.J.; Wang, B.; Guo, Y.K. Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale. J. Hydrol. 2021, 602, 126752. [Google Scholar] [CrossRef]
- McLoone, M.; Quinlan, N.J. Particle transport velocity correction for the finite volume particle method for multi-resolution particle distributions and exact geometric boundaries. Eng. Anal. Bound. Elem. 2020, 114, 114–126. [Google Scholar] [CrossRef]
- Park, I.R.; Kim, K.S.; Kim, J.; Van, S.H. A volume-of-fluid method for incompressible free surface flows. Int. J. Numer. Methods Fluids 2009, 61, 1331–1362. [Google Scholar] [CrossRef]
- Park, I.R.; Kim, K.S.; Kim, J.; Van, S.H. Numerical investigation of the effects of turbulence intensity on dam-break flows. Ocean. Eng. 2012, 42, 176–187. [Google Scholar] [CrossRef]
- Facci, A.L.; Ubertini, S. Numerical assessment of similitude parameters and dimensional analysis for water entry problems. Math. Probl. Eng. 2015, 2015, 324961. [Google Scholar] [CrossRef]
- Reddy, D.N.; Scanlon, T.J.; Kuo, C. Prediction of slam loads on a wedge section using computational fluid dynamics (CFD) techniques. In Proceedings of the Twenty-Fourth Symposium on Naval Hydrodynamics, Fukuoka, Japan, 8–13 July 2002. [Google Scholar]
- Seng, S.; Jensen, J.J.; Pedersen, P.T. Numerical prediction of slamming loads. J. Eng. Marit. Environ. 2012, 226, 120–134. [Google Scholar] [CrossRef]
- Hu, C.H.; Kashiwagi, M. A CIP-based method for numerical simulations of violent free-surface flows. J. Mar. Sci. Technol. 2004, 9, 143–157. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Ming, P.J.; Zhang, W.P.; Chen, J.K. A direct time-integral THINC scheme for sharp interfaces. J. Comput. Phys. 2019, 393, 139–161. [Google Scholar] [CrossRef]
- Violeau, D.; Issa, R. Numerical modelling of complex turbulent free-surface flows with the SPH method: An overview. Int. J. Numer. Methods Fluids 2007, 53, 277–304. [Google Scholar] [CrossRef]
- Wu, T.-R.; Liu, P. Numerical study on the three-dimensional dam-break bore interacting with a square cylinder. In Nonlinear Wave Dynamics: Selected Papers of the Symposium Held in Honor of Philip L-F Liu’s 60th Birthday; World Scientific: Singapore, 2009; pp. 281–303. [Google Scholar]
- Yeh, H.; Shuto, N. Tsunami forces and effects on structures. J. Disaster Res. 2009, 4, 375–376. [Google Scholar] [CrossRef]
- Duan, L.L.; Zhu, L.; Chen, M.S.; Pedersen, P.T. Experimental study on the propagation characteristics of the slamming pressures. Ocean. Eng. 2020, 217, 107868. [Google Scholar] [CrossRef]
- Brown, S.A.; Greaves, D.M.; Magar, V.; Conley, D.C. Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone. Coast. Eng. 2016, 114, 177–193. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Lakshman, R.; Binod, J.R.; Basak, R. Implementation of improved wall function for buffer sub-layer in OpenFOAM. In Proceedings of the International Conference on Thermofluids, Video, 10–11 November 2021; Springer: Singapore, 2021; pp. 61–69. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Biscarini, C.; Francesco, S.D.; Manciola, P. CFD modelling approach for dam break flow studies. Hydrol. Earth Syst. Sci. 2010, 14, 705–718. [Google Scholar] [CrossRef]
- Zhang, X.T.; Tian, X.; Guo, X.; Li, X.; Xiao, L. Bottom step enlarging horizontal momentum flux of dam break flow. Ocean. Eng. 2020, 214, 107729. [Google Scholar] [CrossRef]
- Audusse, E.; Benkhaldoun, F.; Sari, S.; Seaid, M.; Tassi, P. A fast finite volume solver for multi-layered shallow water flows with mass exchange. J. Comput. Phys. 2014, 272, 23–45. [Google Scholar] [CrossRef]
- Kocaman, S.; Ozmen-Cagatay, H. Investigation of dam-break induced shock waves impact on a vertical wall. J. Hydrol. 2015, 525, 1–12. [Google Scholar] [CrossRef]
- Roenby, J.; Bredmose, H.; Jasak, H. A computational method for sharp interface advection. R. Soc. Open Sci. 2016, 3, 160405. [Google Scholar] [CrossRef] [PubMed]
- Scheufler, H.; Roenby, J. Accurate and efficient surface reconstruction from volume fraction data on general meshes. J. Comput. Phys. 2019, 383, 1–23. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. On the partial difference equations of mathematical physics. IBM J. Res. Dev. 1967, 11, 215–234. [Google Scholar] [CrossRef]
- Harten, A. High-resolution schemes for hyperbolic conservation-laws. J. Comput. Phys. 1983, 49, 357–393. [Google Scholar] [CrossRef]
- Issa, R.I. Solution of the implicitly discretized fluid-flow equations by operator-splitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
- Kamra, M.M.; Mohd, N.; Liu, C.; Sueyoshi, M.; Hu, C.H. Numerical and experimental investigation of three-dimensionality in the dam-break flow against a vertical wall. J. Hydrodyn. 2018, 30, 682–693. [Google Scholar] [CrossRef]
- Sueyoshi, M.; Hu, C. Experimental technique and particle simulation for large deformation problems of free-surface. In Conference Proceedings of Japan Society of Naval Architects and Ocean Engineers; Japan Society of Naval Architects and Ocean Engineers: Tokyo, Japan, 2015; pp. 93–94. [Google Scholar]
- Buchner, B. Green Water on Ship-Type Offshore Structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2002. [Google Scholar]
- Wei, Z.P.; Dalrymple, R.A.; Hérault, A.; Bilotta, G.; Rustico, E.; Yeh, H. SPH modeling of dynamic impact of tsunami bore on bridge piers. Coast. Eng. 2015, 104, 26–42. [Google Scholar] [CrossRef]
- Greco, M.; Faltinsen, O.M.; Landrini, M. Shipping of water on a two-dimensional structure. J. Fluid Mech. 2005, 525, 309–332. [Google Scholar] [CrossRef]
- Eijk, M.; Wellens, P.R.; Bos, R.W. Aerated wave impacts on floating bodies. In Proceedings of the Thirty-Fifth International Workshop on Water Waves and Floating Bodies, Seoul, Republic of Korea, 24–27 August 2020. [Google Scholar]
- Faltinsen, O.M.; Landrini, M.; Greco, M. Slamming in marine applications. J. Eng. Math. 2004, 48, 187–217. [Google Scholar] [CrossRef]
- Greco, M. A Two-Dimensional Study of Green-Water Loading. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2001. [Google Scholar]
- Yeh, H. Design tsunami forces for onshore structures. J. Disaster Res. 2007, 2, 531–536. [Google Scholar] [CrossRef]
- Ramsden, J.D. Tsunamis: Forces on a Vertical Wall Caused by Long Waves, Bores, and Surges on a Dry Bed; California Institute of Technology: Pasadena, CA, USA, 1993. [Google Scholar]
- Yen, S.C.; Yang, C.W. Flow patterns and vortex shedding behavior behind a square cylinder. J. Wind. Eng. Ind. Aerodyn. 2011, 99, 868–878. [Google Scholar] [CrossRef]
Physical Properties | Water | Air |
---|---|---|
Density (kg/m3) | 999.7 | 1.2 |
Molecular viscosity (kg/(m·s)) | 1.307 × 10−3 | 1.4 × 10−5 |
Surface tension coefficient (N/m) | 0.0742 |
Spacing | Coarse | Medium | Fine |
---|---|---|---|
Δmin | H/800 | H/1500 | H/2500 |
Δmax | H/80 | H/150 | H/250 |
Total number | 120 k | 258 k | 811 k |
Cores number | 16 | 16 | 32 |
Computational time (s) | 159 | 645 | 8474 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, D.; Chen, L.; Ning, D. Modeling Impact Load on a Vertical Cylinder in Dam-Break Flows. J. Mar. Sci. Eng. 2023, 11, 932. https://doi.org/10.3390/jmse11050932
Mu D, Chen L, Ning D. Modeling Impact Load on a Vertical Cylinder in Dam-Break Flows. Journal of Marine Science and Engineering. 2023; 11(5):932. https://doi.org/10.3390/jmse11050932
Chicago/Turabian StyleMu, Di, Lifen Chen, and Dezhi Ning. 2023. "Modeling Impact Load on a Vertical Cylinder in Dam-Break Flows" Journal of Marine Science and Engineering 11, no. 5: 932. https://doi.org/10.3390/jmse11050932
APA StyleMu, D., Chen, L., & Ning, D. (2023). Modeling Impact Load on a Vertical Cylinder in Dam-Break Flows. Journal of Marine Science and Engineering, 11(5), 932. https://doi.org/10.3390/jmse11050932