Why Are the High Frequency Structures of the Sea Surface Temperature in the Brazil–Malvinas Confluence Area Difficult to Predict? An Explanation Based on Multiscale Imagery and Fractal Geometry
Abstract
:1. Introduction
2. Dataset and Numerical Methods
2.1. Data
2.2. Numerical Techniques
2.2.1. Nonlinear Fit Quasi-Harmonic Model
2.2.2. Iterated Function System: Fractal Interpolation
The Direct Approach: Fractal Construction
2.2.3. Fractal Dimensions
3. Results and Discussion
3.1. Nonlinear Fit Quasi-Harmonic Model
3.2. Fractal Dimensions
3.3. Linear Fractal Interpolation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gordon, A.L. Brazil-Malvinas Confluence-1984. Deep Sea Research Part A. Oceanogr. Res. Pap. 1989, 36, 359363–361384. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Descriptive Physical Oceanography: An Introduction, 6th ed.; Academic Press: Burlington, MA, USA, 2011; p. 555. [Google Scholar]
- Orúe-Echevarría, D.; Pelegrí, J.L.; Machín, F.; Hernández, A.; Emelianov, M. Inverse Modeling the Brazil-Malvinas Confluence. J. Gephys. Res. Ocean 2019, 124, 527–554. [Google Scholar] [CrossRef]
- Orúe-Echevarría, D. The Brazil-Malvinas Confluence: From Local to Global Scales. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2019. [Google Scholar]
- Chelton, D.B.; Schlax, M.G.; Witter, D.L.; Richman, J.G. Geosat altimeter observations of the sea surface circulation of the southern ocean. J. Geophys. Res. 1990, 95, 17887–17903. [Google Scholar] [CrossRef]
- Chelton, D.B.; Wentz, F.J. Global Microwave Satellite Observations of Sea Surface Temperature for Numerical Weather Prediction and Climate Research. Bull. Am. Meteorol. Soc. 2005, 86, 1097–1115. [Google Scholar] [CrossRef]
- Matano, R.P. On the separation of the Brazil Current from the coast. J. Phys. Oceanogr. 1993, 23, 79–90. [Google Scholar] [CrossRef]
- Piola, A.R.; Matano, R.; Palma, E.; Moller, O., Jr.; Campos, E. The influence of the Plata River discharge on the western South Atlantic shelf. Geophys. Res. Lett. 2005, 32, 1603–1606. [Google Scholar] [CrossRef]
- Piola, A.; Martinez, N.; Guerrero, R.; Jardón, F.; Palma, E.; Romero, S. Malvinas-slope water intrusions on the northern Patagonia continental shelf. Ocean Sci. 2010, 6, 345–359. [Google Scholar] [CrossRef]
- Stramma, L.; Ikeda, Y.; Peterson, R.G. Geostrophic transport in the Brazil Current region north of 20 °S. Deep-Sea Res. 1990, 37, 1875–1886. [Google Scholar] [CrossRef]
- Peterson, R.G.; Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 1990, 26, 1–73. [Google Scholar] [CrossRef]
- Pilo, G.S.; Mata, M.M.; Azevedo, J.L.L. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems. Ocean Sci. 2015, 11, 629–641. [Google Scholar] [CrossRef]
- Telesca, L.; Pierini, J.O.; Lovallo, M.; Santamaría-del-Angel, E. Spatio-temporal variability in the Brazil-Malvinas Confluence Zone (BMCZ), based on spectroradiometric MODIS-AQUA chlorophyll-a observations. Oceanologia 2018, 60, 76–85. [Google Scholar] [CrossRef]
- Mason, E.; Pascual, A.; Gaube, P.; Ruiz, S.; Pelegrí, J.; Delepoulle, A. Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence. J. Geophys. Res. Ocean. 2017, 122, 3329–3357. [Google Scholar] [CrossRef]
- Piola, A.; Romero, S.; Zajaczkovski, U. Spacetime variability of the Plata plume inferred from ocean color. Cont. Shelf Res. 2008, 28, 1556–1567. [Google Scholar] [CrossRef]
- Pierini, J.O.; Lovallo, M.; Gómez, E.A.; Telesca, L. Fisher–Shannon analysis of the time variability of remotely sensed sea surface temperature at the Brazil-Malvinas Confluence. Oceanologia 2016, 58, 187–195. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Characterization of Strange Attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Measuring the Strangeness of Strange Attractors. Phys. D Nonlinear Phenom. 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Grassberger, P. Generalized Dimensions of Strange Attractors. Phys. Lett. A 1983, 97, 227–230. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Dimensions and Entropies of Strange Attractors from a Fluctuating Dynamics Approach. Physica 1984, 13, 34–54. [Google Scholar] [CrossRef]
- Takens, F. Detecting Strange Attractors in Turbulence, Lecture Notes in Mathematics; Rand, D.A., Young, L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Crosman, E.; Vázquez-Cuervo, J.; Chin, T.M. Evaluation of the Multi-Scale Ultra-High Resolution (MUR) Analysis of Lake Surface Temperature. Remote Sens. 2017, 9, 723. [Google Scholar] [CrossRef]
- Wainer, I.; Gent, P.; Goni, G. Annual Cycle of the Brazil-Malvinas confluence region in the National Center for Atmospheric Research Climate System Model. J. Geophys. Res. 2000, 105, 26167–26177. [Google Scholar] [CrossRef]
- Falconer, K. Techniques in Fractal Geometry; John Wiley and Sons: Hoboken, NJ, USA, 1997; ISBN 0-471-95724-0. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2014; ISBN 111994239X. [Google Scholar]
- Mazel, D.S.; Hayes, M.H. Using Iterated Function System to Model Discrete Sequences. IEEE Trans. Signal Process. 1992, 40, 1724–1734. [Google Scholar] [CrossRef]
- Barnsley, M.F.; Ervin, V.; Hardin, D.; Lancaster, J. Solution of an inverse problem for fractals and other sets. Proc. Natl. Acad. Sci. USA 1986, 83, 1975–1977. [Google Scholar] [CrossRef] [PubMed]
- Barnsley, M.F.; Harrintong, A.N. The Calculus of Fractal Interpolation Functions. J. Approx. Theory 1989, 57, 14–34. [Google Scholar] [CrossRef]
- Rinaldo, R.; Zakhor, A. Inverse and Approximation Problem for Two Dimensional Fractal Sets. IEEE Trans. Signal Process. 1994, 3, 802–820. [Google Scholar] [CrossRef]
- Alonso, J. On the fractal dimension of Earth Tides and characterizations of gravity stations. Bull. D’inf. Des Marees Terr. 1998, 129, 9963–9973. [Google Scholar]
- Alonso, J.; Villares, P.; González, M.J.; Arias, M.; Marín, B. Ocean Tides and Fractal Geometry: Tidal Station Stability. Thalassas Int. J. Mar. Sci. 2005, 21, 9–16. [Google Scholar]
- Rényi, A. On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hung. 1959, 10, 193–215. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 9781118585771. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, J.J.; Vidal, J.M.; Blázquez, E. Why Are the High Frequency Structures of the Sea Surface Temperature in the Brazil–Malvinas Confluence Area Difficult to Predict? An Explanation Based on Multiscale Imagery and Fractal Geometry. J. Mar. Sci. Eng. 2023, 11, 1096. https://doi.org/10.3390/jmse11061096
Alonso JJ, Vidal JM, Blázquez E. Why Are the High Frequency Structures of the Sea Surface Temperature in the Brazil–Malvinas Confluence Area Difficult to Predict? An Explanation Based on Multiscale Imagery and Fractal Geometry. Journal of Marine Science and Engineering. 2023; 11(6):1096. https://doi.org/10.3390/jmse11061096
Chicago/Turabian StyleAlonso, José Juan, Juan Manuel Vidal, and Elízabeth Blázquez. 2023. "Why Are the High Frequency Structures of the Sea Surface Temperature in the Brazil–Malvinas Confluence Area Difficult to Predict? An Explanation Based on Multiscale Imagery and Fractal Geometry" Journal of Marine Science and Engineering 11, no. 6: 1096. https://doi.org/10.3390/jmse11061096
APA StyleAlonso, J. J., Vidal, J. M., & Blázquez, E. (2023). Why Are the High Frequency Structures of the Sea Surface Temperature in the Brazil–Malvinas Confluence Area Difficult to Predict? An Explanation Based on Multiscale Imagery and Fractal Geometry. Journal of Marine Science and Engineering, 11(6), 1096. https://doi.org/10.3390/jmse11061096