Adaptive Sliding Mode Control for Unmanned Surface Vehicles with Predefined-Time Tracking Performances
Abstract
:1. Introduction
2. Problem Formulation and Preliminaries
2.1. Problem Formulation
2.2. Preliminaries
3. Main Results
3.1. Controller Design
3.2. Stability Analysis
4. Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skjetne, R.; Smogeli, Ø.; Fossen, T. Modeling, identification, and adaptive maneuvering of Cybership II: A complete design with experiments. IFAC Proc. 2004, 37, 203–208. [Google Scholar] [CrossRef]
- Wu, D.; Yuan, K.; Huang, Y.; Yuan, Z.; Hua, L. Design and test of an improved active disturbance rejection control system for water sampling unmanned surface vehicle. Ocean. Eng. 2022, 245, 110367. [Google Scholar] [CrossRef]
- Shen, H.; Yin, Y.; Qian, X. Fixed-time formation control for unmanned surface vehicles with parametric uncertainties and complex disturbance. J. Mar. Sci. Eng. 2022, 10, 1246. [Google Scholar] [CrossRef]
- Wen, G.; Ge, S.; Chen, C.; Tu, F.; Wang, S. Adaptive tracking control of surface vessel using optimized backstepping technique. IEEE Trans. Cybern. 2018, 49, 3420–3431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guo, C. Anti-disturbance lyapunov-based model predictive control for trajectory tracking of dynamically positioned ships. J. Mar. Sci. Eng. 2023, 11, 281. [Google Scholar] [CrossRef]
- Chen, H.; Tang, G.; Wang, S.; Guo, W.; Huang, H. Adaptive fixed-time backstepping control for three-dimensional trajectory tracking of underactuated autonomous underwater vehicles. Ocean. Eng. 2023, 275, 114109. [Google Scholar] [CrossRef]
- Degorre, L.; Delaleau, E.; Chocron, O. A survey on model-based control and guidance principles for autonomous marine vehicles. J. Mar. Sci. Eng. 2023, 11, 430. [Google Scholar] [CrossRef]
- Liu, W.; Ye, H.; Yang, X. Super-twisting sliding mode control for the trajectory tracking of underactuated USVs with disturbances. J. Mar. Sci. Eng. 2023, 11, 636. [Google Scholar] [CrossRef]
- Yu, X.; Feng, Y.; Man, Z. Terminal sliding mode control—An overview. IEEE Open J. Ind. Electron. 2020, 2, 36–52. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, X.; Yu, S.; Wang, C. Barrier function-based adaptive neural network sliding mode control of autonomous surface vehicles. Ocean. Eng. 2021, 238, 109684. [Google Scholar] [CrossRef]
- Wang, D.; Kong, M.; Zhang, G.; Liang, X. Adaptive second-order fast terminal sliding-mode formation control for unmanned surface vehicles. J. Mar. Sci. Eng. 2022, 10, 1782. [Google Scholar] [CrossRef]
- Jiang, T.; Yan, Y.; Wu, D.; Yu, S.; Li, T. Neural network based adaptive sliding mode tracking control of autonomous surface vehicles with input quantization and saturation. Ocean. Eng. 2022, 265, 112505. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, W. Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control. IEEE Trans. Industr. Inform. 2019, 16, 1248–1258. [Google Scholar] [CrossRef]
- Chao, L.; Ma, H.; Tian, S.; Li, Y. Adaptive barrier sliding-mode control considering state-dependent uncertainty. IEEE Trans. Circuits Syst. II Express Briefs. 2021, 68, 3301–3305. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, P. Asymptotic stabilization of USVs with actuator dead-zones and yaw constraints based on fixed-time disturbance observer. IEEE Trans. Veh. 2020, 69, 302–316. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, Z.; Qin, H.; Deng, Z.; Sun, Y. Finite-time extended state observer-based exact tracking control of an unmanned surface vehicle. Int. J. Robust Nonlinear Control. 2021, 31, 1704–1719. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, S.; Yan, Y. Fixed-time velocity-free sliding mode tracking control for marine surface vessels with uncertainties and unknown actuator faults. Ocean. Eng. 2020, 201, 107107. [Google Scholar] [CrossRef]
- Chang, L.; Han, Q.; Ge, X.; Zhang, C.; Zhang, X. On designing distributed prescribed finite-time observers for strict-feedback nonlinear systems. IEEE Trans. Cybern. 2019, 51, 4695–4706. [Google Scholar] [CrossRef]
- Jiménez-Rodríguez, E.; Muñoz-Vázquez, A.; Sánchez-Torres, J.; Defoort, M.; Loukianov, A. A Lyapunov-like characterization of predefined-time stability. IEEE Trans. Autom. Control. 2020, 65, 4922–4927. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Ge, M.; Liu, Z.; Ling, G.; Liu, F. Predefined-time formation tracking control of networked marine surface vehicles. Control Eng. Pract. 2020, 107, 104682. [Google Scholar] [CrossRef]
- Shao, K.; Zheng, J.; Wang, H.; Man, Z. Terminal time regulator-based exact-time sliding mode control for uncertain nonlinear systems. Int. J. Robust Nonlinear Control. 2022, 32, 7536–7553. [Google Scholar] [CrossRef]
- Ma, H.; Liu, W.; Xiong, Z.; Li, Y.; Liu, Z.; Sun, Y. Predefined-time barrier function adaptive sliding-mode control and its application to piezoelectric actuators. IEEE Trans. Industr. Inform. 2022, 18, 8682–8691. [Google Scholar] [CrossRef]
- Souissi, S.; Boukattaya, M. Time-varying nonsingular terminal sliding mode control of autonomous surface vehicle with predefined convergence time. Ocean. Eng. 2022, 263, 112264. [Google Scholar] [CrossRef]
- Wu, Z.; Ni, J.; Qian, W.; Bu, X.; Liu, B. Composite prescribed performance control of small unmanned aerial vehicles using modified nonlinear disturbance observer. ISA Trans. 2021, 116, 30–45. [Google Scholar] [CrossRef]
- Zhu, G.; Ma, Y.; Li, Z.; Malekian, R.; Sotelo, M. Adaptive neural output feedback control for MSVs with predefined performance. IEEE Trans. Veh. Technol. 2021, 70, 2994–3006. [Google Scholar] [CrossRef]
- Zhao, J.; Cai, C.; Liu, Y. Barrier lyapunov function-based adaptive prescribed-time extended state observers design for unmanned surface vehicles subject to unknown disturbances. Ocean. Eng. 2023, 270, 113671. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, L.; Li, T.; Chen, C. Integral sliding mode-based fault-tolerant control for dynamic positioning of unmanned marine vehicles based on a T-S fuzzy model. J. Mar. Sci. Eng. 2023, 11, 370. [Google Scholar] [CrossRef]
- Yao, Q. Adaptive finite-time sliding mode control design for finite-time fault-tolerant trajectory tracking of marine vehicles with input saturation. J. Frank. Inst. 2020, 357, 13593–13619. [Google Scholar] [CrossRef]
- Li, Y.; He, J.; Zhang, Q.; Zhang, W.; Li, Y. Predefined-time fault-tolerant trajectory tracking control for autonomous underwater vehicles considering actuator saturation. Actuators 2023, 12, 171. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, Y.; Li, H. Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles. Appl. Math. Comput. 2021, 401, 126078. [Google Scholar] [CrossRef]
- Ma, M.; Wang, T.; Guo, R.; Qiu, J. Neural network-based tracking control of autonomous marine vehicles with unknown actuator dead-zone. Int. J. Robust Nonlinear Control. 2021, 32, 2969–2982. [Google Scholar] [CrossRef]
- Cui, R.; Zhang, X.; Cui, D. Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean. Eng. 2016, 123, 45–54. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, G. Fixed-time switching control of underactuated surface vessels with dead-zones: Global exponential stabilization. J. Frank. Inst. 2019, 357, 11217–11241. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, M.; Zhang, W.; Zhang, W. Improved composite adaptive fault-tolerant control for dynamic positioning vehicle subject to the dead-zone nonlinearity. IET Control. Theory Appl. 2021, 15, 2067–2080. [Google Scholar] [CrossRef]
- Yan, Y.; Yu, S. Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization. Ocean. Eng. 2018, 151, 322–328. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, H.; Li, H.; Li, T. Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and time-delay. Ocean. Eng. 2020, 215, 107882. [Google Scholar] [CrossRef]
- Yan, Y.; Yu, S.; Yu, X. Quantized super-twisting algorithm based sliding mode control. Automatica 2019, 105, 43–48. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, H.; Guo, G.; Li, H. Quantized sliding mode control of unmanned marine vehicles: Various thruster faults tolerated with a unified model. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 2012–2026. [Google Scholar] [CrossRef]
- Shao, X.; Shi, Y. Fault-tolerant quantized control for flexible air-breathing hypersonic vehicles with appointed-time tracking performances. IEEE Trans. Aerosp Electron. Syst. 2021, 57, 1261–1273. [Google Scholar] [CrossRef]
- Li, A.; Liu, M.; Cao, X.; Liu, R. Adaptive quantized sliding mode attitude tracking control for flexible spacecraft with input dead-zone via Takagi-Sugeno fuzzy approach. Inf. Sci. 2021, 587, 746–773. [Google Scholar] [CrossRef]
- Zhang, T.; Bai, R.; Li, Y. Practically predefined-time adaptive fuzzy quantized control for nonlinear stochastic systems with actuator dead zone. IEEE Trans. Fuzzy Syst. 2022, 31, 1240–1253. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, J.; Liu, Z.; He, W.; Hong, K. Adaptive quantized fault-tolerant control of a 2-DOF helicopter system with actuator fault and unknown dead zone. Automatica 2023, 148, 110792. [Google Scholar] [CrossRef]
- Shao, K.; Zheng, J. Predefined-time sliding mode control with prescribed convergent region. IEEE-CAA J. Autom. Sin. 2022, 9, 934–936. [Google Scholar] [CrossRef]
- Slotine, J.; Li, W. Applied Nonlinear Control; Englewood Cliffs: Prentice Hall, NJ, USA, 1991; pp. 278–280. [Google Scholar]
- Yin, Z.; Suleman, A.; Luo, J.; Wei, C. Appointed-time prescribed performance attitude tracking control via double performance functions. Aerosp. Sci. Technol. 2019, 93, 105337. [Google Scholar] [CrossRef]
- Tao, G. Model reference adaptive control with L1+α tracking. Int. J. Control. 1996, 64, 859–870. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Yazdanpanah, M. Performance enhanced model reference adaptive control through switching non-quadratic Lyapunov functions. Syst. Control. Lett. 2015, 76, 47–55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.; Yan, Y.; Yu, S.-H. Adaptive Sliding Mode Control for Unmanned Surface Vehicles with Predefined-Time Tracking Performances. J. Mar. Sci. Eng. 2023, 11, 1244. https://doi.org/10.3390/jmse11061244
Jiang T, Yan Y, Yu S-H. Adaptive Sliding Mode Control for Unmanned Surface Vehicles with Predefined-Time Tracking Performances. Journal of Marine Science and Engineering. 2023; 11(6):1244. https://doi.org/10.3390/jmse11061244
Chicago/Turabian StyleJiang, Tao, Yan Yan, and Shuang-He Yu. 2023. "Adaptive Sliding Mode Control for Unmanned Surface Vehicles with Predefined-Time Tracking Performances" Journal of Marine Science and Engineering 11, no. 6: 1244. https://doi.org/10.3390/jmse11061244
APA StyleJiang, T., Yan, Y., & Yu, S. -H. (2023). Adaptive Sliding Mode Control for Unmanned Surface Vehicles with Predefined-Time Tracking Performances. Journal of Marine Science and Engineering, 11(6), 1244. https://doi.org/10.3390/jmse11061244