Effect of the Added Acyl Homoserine Lactones on Separated Free-Living Marine Bacteria as a Model of Quorum Sensing
Abstract
:1. Introduction
2. Material and Methods
2.1. Extraction of AHLs
2.2. Detection of AHLs—A. tumefaciens Bioassay
2.3. Bacterial Numbers in Marine Water
2.4. Experimental Protocol
3. Results and Discussion
3.1. Identification of Origin of Signaling Molecules in the Galveston Bay Water
3.2. Response of the Sparse Bacterial Community to AHLs, November 2002
3.3. Response of the Sparse Bacterial Community to AHLs, April 2003
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hmelo, L.R. Quorum Sensing in Marine Microbial Environments. Annu. Rev. Mar. Sci. 2017, 9, 257–258. [Google Scholar] [CrossRef]
- Nealson, K.H.; Platt, T.; Hastings, J.W. Cellular control of the synthesis and activity of the bacterial luminescence system. J. Bacteriol. 1970, 104, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhard, A.; Burlingame, A.L.; Eberhard, C.; Kenyon, G.L.; Nealson, K.H.; Oppenheimer, N.J. Structural identification of autoinducer of Photobacterium fischeri. Biochemistry 1981, 20, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1994, 176, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdugo, P.; Santschi, P.H. Polymer dynamics of DOC networks and gel formation in seawater. Deep. Sea Res. Part II 2010, 57, 1486–1493. [Google Scholar] [CrossRef]
- Verdugo, P. Marine Microgels. Annu. Rev. Mar. Sci. 2012, 4, 375–400. [Google Scholar] [CrossRef]
- Quigg, A.; Santschi, P.H.; Burd, A.; Chin, W.-C.; Kamalanathan, M.; Xu, C.; Ziervogel, K. From Nano-Gels to Marine Snow: A Synthesis of Gel Formation Processes and Modeling Efforts Involved with Particle Flux in the Ocean. Gels 2021, 7, 114. [Google Scholar] [CrossRef]
- Engel, A.; Endres, S.; Galgani, L.; Schartau, M. Marvelous Marine Microgels: On the Distribution and Impact of Gel-Like Particles in the Oceanic Water-Column. Front. Mar. Sci. 2020, 7, 405. [Google Scholar] [CrossRef]
- Chin, W.-C.; Orellana, M.V.; Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998, 391, 568–572. [Google Scholar] [CrossRef]
- Santschi, P.H.; Balnois, E.; Wilkinson, K.; Zhang, J.; Buffle, J.; Guo, L. Fibrillar polysaccharides in marine macromolecular organic matter, as imaged by Atomic Force Microscopy and Transmission Electron Microscopy. Limnol. Oceanogr. 1998, 43, 896–908. [Google Scholar] [CrossRef]
- Verdugo, P.; Alldredge, A.L.; Azam, F.; Kirchman, D.L.; Passow, U.; Santschi, P.H. The oceanic gel phase: A bridge in the DOM–POM continuum. Mar. Chem. 2004, 92, 67–85. [Google Scholar] [CrossRef]
- Guo, L.; Santschi, P.H. Ultrafiltration and its applications to sampling and characterisation of aquatic colloids. IUPAC Ser. Anal. Phys. Chem. Environ. Syst. 2007, 10, 159. [Google Scholar]
- Xu, C.; Chin, W.-C.; Lin, P.; Chen, H.M.; Lin, P.; Chiu, M.-C.; Waggoner, D.C.; Xing, W.; Sun, L.; Schwehr, K.A.; et al. Marine Gels, Extracellular Polymeric Substances (EPS) and Transparent Exopolymeric Particles (TEP) in natural seawater and seawater contaminated with a water accommodated fraction of Macondo oil surrogate. Mar. Chem. 2019, 215, 103667. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Lambert, C.; Santschi, P.H.; Baskaran, M.; Guo, L. Plant pigments as biomarkers of high-molecular-weight dissolved organic carbon. Limnol. Oceanogr. 1995, 40, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Swift, S.; Karlyshev, A.V.; Fish, L.; Durant, E.L.; Winson, M.K.; Chhabra, S.R.; Williams, P.; Macintyre, S.; Stewart, G.S. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: Identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J. Bacteriol. 1997, 179, 5271–5281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, D.W.; Gong, F.; Daykin, M.M.; Williams, P.; Pierson, L.S. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aereofaciens 30-84 in the wheat rhizosphere. J. Bacteriol. 1997, 179, 7663–7670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunphy, G.; Miyamoto, C.; Meighen, E. A homoserine lactone autoinducer regulates virulence of an insect-pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae). J. Bacteriol. 1997, 179, 5288–5291. [Google Scholar] [CrossRef] [Green Version]
- Eberl, L.; Winson, M.K.; Sternberg, C.; Stewart, G.S.; Christiansen, G.; Chharbra, G.; Bycroft, B.W.; Williams, P.; Molin, S.; Givskov, M. Involvement of N-acyl-homoserine lactone autoinducers in controlling the multicellular behavior of Serratia liquefaciens. Mol. Microbiol. 1996, 20, 127–136. [Google Scholar] [CrossRef] [PubMed]
- von Bodman, S.B.; Farrand, S.K. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J. Bacteriol. 1995, 177, 5000–5008. [Google Scholar] [CrossRef] [Green Version]
- Brint, J.M.; Ohman, D.E. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAOl with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 1995, 177, 7155–7163. [Google Scholar] [CrossRef] [Green Version]
- Gray, K.M.; Pearson, J.P.; Downie, J.A.; Boboye, B.E.A.; Greenberg, E.P. Cell-to-cell signalling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: Autoinduction of a stationary phase and rhizosphere-expressed genes. J. Bacteriol. 1996, 178, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Lazazzera, B.A. Quorum sensing and starvation: Signals for entry into stationary phase. Curr. Opin. Microbiol. 2000, 3, 177–182. [Google Scholar] [CrossRef]
- Ploug, H.; Grossart, H.P.; Azam, F.; Jørgensen, B.B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 1999, 179, 1–11. [Google Scholar] [CrossRef]
- Kiorboe, T. Colonization of marine snow aggregates by invertebrate zooplankton: Abundance, scaling, and possible role. Limnol. Oceanogr. 2000, 45, 479–484. [Google Scholar] [CrossRef]
- Gram, L.; Grossart, H.-P.; Schlingloff, A.; Kiørboe, T. Possible quorum sensing in marine snow bacteria: Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl. Environ. Microbiol. 2002, 68, 4111–4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, L.L.; Kamino, K. Bacterial response to siderophore and quorum-sensing chemical signals in the seawater microbial community. BMC Microbiol. 2001, 1, 27–37. [Google Scholar] [CrossRef] [PubMed]
- van Herpen, T.W.J.M.; Cordewener, J.H.G.; Klok, H.J.; Freeman, J.; America, A.H.P.; Bosch, D.; Smulders, M.J.M.; Gilissen, L.J.W.J.; Shewry, P.R.; Hamer, R.J. The origin and early development of wheat glutenin particles. J. Cereal Sci. 2008, 48, 870–877. [Google Scholar] [CrossRef]
- Shaw, P.D.; Ping, G.; Daly, S.L.; Cha, C.; Cronan, J.E.; Rinehart, K.L.; Farrand, S.K. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 1997, 94, 6036–6041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuqua, C.; Winans, S.C. Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J. Bacteriol. 1996, 178, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.-Q.; Clemente, T.E.; Farrand, S.K. Construction of a Derivative of Agrobacterium tumefaciens C58 That Does Not Mutate to Tetracycline Resistance. Mol. Plant-Microbe Interact. 2001, 14, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Tempe, J.; Petit, A.; Holsters, M.; Montagu, M.V.; Schell, J. Thermosensitive step associated with transfer of the TI plasmid during conjugation: Possible relation to transformation in crown gall. Proc. Natl. Acad. Sci. USA 1977, 74, 2848–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLong, E.F.; Franks, D.G.; Alldredge, A.L. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 1993, 38, 924–934. [Google Scholar] [CrossRef] [Green Version]
- Fuhrman, J.A.; Azam, F. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar. Biol. 1982, 66, 109–120. [Google Scholar] [CrossRef]
- Smith, D.C.; Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs. 1992, 6, 107–114. [Google Scholar]
- Bidle, K.D.; Fletcher, M. Comparison of free-living and particle-associated bacterial communities in the Chesapeake Bay by stable low-molecular-weight RNA analysis. Appl. Environ. Microbiol. 1995, 61, 944–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acinas, S.G.; Rodríguez-Valera, F.; Pedrós-Alió, C. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol. Ecol. 1997, 24, 27–40. [Google Scholar] [CrossRef]
- Crump, B.C.; Armbrust, E.V.; Baross, J.A. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 1999, 65, 3192–3204. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, N.A.; Barnard, A.M.L.; Slater, H.; Simpson, N.J.L.; Salmond, G.P.C. Quorum-sensing in gram negative bacteria. FEMS Microbiol. Rev. 2001, 25, 365–404. [Google Scholar] [CrossRef]
- Kelly, K.M.; Chistoserdov, A.Y. Phylogenetic analysis of the succession of bacterial communities in the Great South Bay (Long Island). FEMS Microbiol. Ecol. 2001, 35, 85–95. [Google Scholar] [CrossRef]
- Schultz, G.E.J.; Ducklow, H.W. Changes in bacterioplankton metabolic capabilities along a salinity gradient in the York River estuary, Virginia, USA. Aquat. Microb. Ecol. 2000, 22, 163–174. [Google Scholar] [CrossRef]
- Guo, L.; Santschi, P.H. Isotopic and elemental characterization of colloidal organic matter from the Chesapeake Bay and Galveston Bay. Mar. Chem. 1997, 59, 1–15. [Google Scholar] [CrossRef]
- Amon, R.M.W.; Benner, R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 1994, 369, 549–552. [Google Scholar] [CrossRef]
- Barbara, G.M.; Mitchell, J.G. Marine bacterial organisation around point-like sources of amino acids. Fems. Microbiol. Ecol. 2003, 43, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Santschi, P.H. Seasonality of nutrient concentrations in Galveston Bay. Mar. Environ. Res. 1995, 40, 337–362. [Google Scholar] [CrossRef]
- Lin, M.; Payne, D.A.; Schwarz, J.R. Intraspecific Diversity of Vibrio vulnificus in Galveston Bay Water and Oysters asDetermined by Randomly Amplified Polymorphic DNA PCR. Appl. Environ. Microbiol. 2003, 69, 3170–3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnken, K.W.; Santschi, P.H. Sediment and trace metal delivery from the Trinity River watershed to Galveston Bay and the Gulf of Mexico. Estuaries Coasts 2009, 32, 158–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schultz, G.E., Jr.; Santschi, P.H. Effect of the Added Acyl Homoserine Lactones on Separated Free-Living Marine Bacteria as a Model of Quorum Sensing. J. Mar. Sci. Eng. 2023, 11, 1258. https://doi.org/10.3390/jmse11071258
Schultz GE Jr., Santschi PH. Effect of the Added Acyl Homoserine Lactones on Separated Free-Living Marine Bacteria as a Model of Quorum Sensing. Journal of Marine Science and Engineering. 2023; 11(7):1258. https://doi.org/10.3390/jmse11071258
Chicago/Turabian StyleSchultz, Gary E., Jr., and Peter H. Santschi. 2023. "Effect of the Added Acyl Homoserine Lactones on Separated Free-Living Marine Bacteria as a Model of Quorum Sensing" Journal of Marine Science and Engineering 11, no. 7: 1258. https://doi.org/10.3390/jmse11071258
APA StyleSchultz, G. E., Jr., & Santschi, P. H. (2023). Effect of the Added Acyl Homoserine Lactones on Separated Free-Living Marine Bacteria as a Model of Quorum Sensing. Journal of Marine Science and Engineering, 11(7), 1258. https://doi.org/10.3390/jmse11071258