Two-Branch Underwater Image Enhancement and Original Resolution Information Optimization Strategy in Ocean Observation
Abstract
:1. Introduction
2. Related works
2.1. Traditional Underwater Image Enhancement Methods
2.2. Learning-Based Underwater Image Enhancement Methods
3. Proposed Method
3.1. Feature Enhancement Subnetwork
Adaptive Feature Selection Module
3.2. Original Resolution Subnetwork
Semantic Feature Reconstruction Module
3.3. Loss Function
4. Experiments and Analysis
4.1. Preparation
4.1.1. Data
4.1.2. Training Settings
4.1.3. Methods for Comparison
4.2. Evaluation of Underwater Images
4.2.1. Objective Evaluation Metrics
4.2.2. Underwater Image Evaluation of Different Scenarios
4.3. Ablation Experiments
4.4. Application Test
5. Conclusions
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UIE | Underwater Image Enhancement |
FEnet | Feature Enhancement Subnetwork |
ORSnet | Original Restoration Subnetwork |
MIEN | Multi-resolution Information Enhancement Network |
AFSM | Adaptive Feature Selection Module |
ASSM | Adaptive Spatial Selection Module |
ACSM | Adaptive Channel Selection Module |
EFSM | Enhancing Feature Selection Module |
SFRG | Semantic Feature Reconstruction Group |
SFRM | Semantic Feature Reconstruction Module |
UIQM | Underwater Image Quality Measure |
NIQE | Naturalness Image Quality Evaluator |
CEIQ | Contrast Enhancement Image Quality |
MSE | Mean-square Error |
FSIM | Feature Similarity Index Measure |
PSNR | Peak Signal-to-noise-ratio |
SSIM | Structural Similarity |
UICM | Underwater Image Colorfulness Measure |
UISM | Underwater Image Sharpness Measure |
UIConM | Underwater Image Contrast Measure |
References
- Zhou, J.; Zhuang, J.; Zheng, Y.; Li, J. Area Contrast Distribution Loss for Underwater Image Enhancement. J. Mar. Sci. Eng. 2023, 11, 909. [Google Scholar] [CrossRef]
- Jiang, Q.; Gu, Y.; Li, C.; Cong, R.; Shao, F. Underwater image enhancement quality evaluation: Benchmark dataset and objective metric. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5959–5974. [Google Scholar] [CrossRef]
- Johnson-Roberson, M.; Bryson, M.; Friedman, A.; Pizarro, O.; Troni, G.; Ozog, P.; Henderson, J.C. High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology. J. Field Robot. 2017, 34, 625–643. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Rong, S.; He, B.; Chen, L. Underwater image deblurring framework using a generative adversarial network. In Proceedings of the OCEANS 2022-Chennai, Chennai, India, 21–24 February 2022; pp. 1–4. [Google Scholar]
- Fan, G.D.; Fan, B.; Gan, M.; Chen, G.Y.; Chen, C.P. Multiscale low-light image enhancement network with illumination constraint. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7403–7417. [Google Scholar] [CrossRef]
- Peng, Y.T.; Lu, Z.; Cheng, F.C.; Zheng, Y.; Huang, S.C. Image haze removal using airlight white correction, local light filter, and aerial perspective prior. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1385–1395. [Google Scholar] [CrossRef]
- Berman, D.; Treibitz, T.; Avidan, S. Diving into haze-lines: Color restoration of underwater images. In Proceedings of the British Machine Vision Conference (BMVC), London, UK, 4–7 September 2017; Volume 1. [Google Scholar]
- Li, K.; Wu, L.; Qi, Q.; Liu, W.; Gao, X.; Zhou, L.; Song, D. Beyond single reference for training: Underwater image enhancement via comparative learning. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 2561–2576. [Google Scholar] [CrossRef]
- Gao, R.; Li, R.; Hu, M.; Suganthan, P.N.; Yuen, K.F. Dynamic ensemble deep echo state network for significant wave height forecasting. Appl. Energy 2023, 329, 120261. [Google Scholar] [CrossRef]
- Gao, R.; Cheng, W.X.; Suganthan, P.; Yuen, K.F. Inpatient discharges forecasting for singapore hospitals by machine learning. IEEE J. Biomed. Health Inform. 2022, 26, 4966–4975. [Google Scholar] [CrossRef]
- Ren, W.; Liu, S.; Ma, L.; Xu, Q.; Xu, X.; Cao, X.; Du, J.; Yang, M.H. Low-light image enhancement via a deep hybrid network. IEEE Trans. Image Process. 2019, 28, 4364–4375. [Google Scholar] [CrossRef]
- Ren, W.; Pan, J.; Zhang, H.; Cao, X.; Yang, M.H. Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int. J. Comput. Vis. 2020, 128, 240–259. [Google Scholar] [CrossRef]
- Liu, J.; Shang, J.; Liu, R.; Fan, X. Attention-guided global-local adversarial learning for detail-preserving multi-exposure image fusion. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5026–5040. [Google Scholar] [CrossRef]
- Liu, J.; Fan, X.; Jiang, J.; Liu, R.; Luo, Z. Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 105–119. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, J.; Zhang, W.; Lin, Z. Multi-view underwater image enhancement method via embedded fusion mechanism. Eng. Appl. Artif. Intell. 2023, 121, 105946. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Cao, Y.; Wang, Z. A deep CNN method for underwater image enhancement. In Proceedings of the 2017 IEEE international conference on image processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1382–1386. [Google Scholar]
- Zhang, Y.; Chen, D.; Zhang, Y.; Shen, M.; Zhao, W. A Two-Stage Network Based on Transformer and Physical Model for Single Underwater Image Enhancement. J. Mar. Sci. Eng. 2023, 11, 787. [Google Scholar] [CrossRef]
- Ghani, A.S.A.; Isa, N.A.M. Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl. Soft Comput. 2015, 27, 219–230. [Google Scholar] [CrossRef]
- Jaffe, J.S. Computer modeling and the design of optimal underwater imaging systems. IEEE J. Ocean. Eng. 1990, 15, 101–111. [Google Scholar] [CrossRef]
- Liu, H.; Chau, L.P. Underwater image restoration based on contrast enhancement. In Proceedings of the 2016 IEEE International Conference on Digital Signal Processing (DSP), Beijing, China, 16–18 October 2016; pp. 584–588. [Google Scholar]
- Li, C.; Guo, J.; Guo, C.; Cong, R.; Gong, J. A hybrid method for underwater image correction. Pattern Recognit. Lett. 2017, 94, 62–67. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Chau, L.P. Single underwater image restoration using adaptive attenuation-curve prior. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 65, 992–1002. [Google Scholar] [CrossRef]
- Xie, J.; Hou, G.; Wang, G.; Pan, Z. A variational framework for underwater image dehazing and deblurring. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 3514–3526. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar]
- Chiang, J.Y.; Chen, Y.C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2011, 21, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Drews, P.L.; Nascimento, E.R.; Botelho, S.S.; Campos, M.F.M. Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appl. 2016, 36, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Ding, X.; Wang, Y.; Yan, X.; Fu, X. GUDCP: Generalization of underwater dark channel prior for underwater image restoration. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 4879–4884. [Google Scholar] [CrossRef]
- Peng, Y.T.; Cao, K.; Cosman, P.C. Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 2018, 27, 2856–2868. [Google Scholar] [CrossRef]
- Carlevaris-Bianco, N.; Mohan, A.; Eustice, R.M. Initial results in underwater single image dehazing. In Proceedings of the Oceans 2010 Mts/IEEE Seattle, Washington, DC, USA, 20–23 September 2010; pp. 1–8. [Google Scholar]
- Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Guo, J.; Chen, S.; Tang, Y.; Pang, Y.; Wang, J. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1993–1997. [Google Scholar]
- Akkaynak, D.; Treibitz, T. Sea-thru: A method for removing water from underwater images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1682–1691. [Google Scholar]
- Zhou, J.; Pang, L.; Zhang, D.; Zhang, W. Underwater Image Enhancement Method via Multi-Interval Subhistogram Perspective Equalization. IEEE J. Ocean. Eng. 2023, 48, 474–488. [Google Scholar] [CrossRef]
- Zhuang, P.; Ding, X. Underwater image enhancement using an edge-preserving filtering retinex algorithm. Multimed. Tools Appl. 2020, 79, 17257–17277. [Google Scholar] [CrossRef]
- Yuan, J.; Cao, W.; Cai, Z.; Su, B. An underwater image vision enhancement algorithm based on contour bougie morphology. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8117–8128. [Google Scholar] [CrossRef]
- Anwar, S.; Li, C. Diving deeper into underwater image enhancement: A survey. Signal Process. Image Commun. 2020, 89, 115978. [Google Scholar] [CrossRef]
- Fabbri, C.; Islam, M.J.; Sattar, J. Enhancing underwater imagery using generative adversarial networks. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7159–7165. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Li, H.; Zhuang, P. DewaterNet: A fusion adversarial real underwater image enhancement network. Signal Process. Image Commun. 2021, 95, 116248. [Google Scholar] [CrossRef]
- Guo, Y.; Li, H.; Zhuang, P. Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Ocean. Eng. 2019, 45, 862–870. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.; Chen, B.M. MLFcGAN: Multilevel feature fusion-based conditional GAN for underwater image color correction. IEEE Geosci. Remote. Sens. Lett. 2019, 17, 1488–1492. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Anwar, S.; Hou, J.; Cong, R.; Guo, C.; Ren, W. Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans. Image Process. 2021, 30, 4985–5000. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Zhang, Y.; Tian, F.; Wu, Q.J.; Li, K.; Luan, X.; Song, D. Underwater image co-enhancement with correlation feature matching and joint learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 1133–1147. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, D.; Zhang, W. Cross-view enhancement network for underwater images. Eng. Appl. Artif. Intell. 2023, 121, 105952. [Google Scholar] [CrossRef]
- Li, C.Y.; Guo, J.C.; Cong, R.M.; Pang, Y.W.; Wang, B. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 2016, 25, 5664–5677. [Google Scholar] [CrossRef]
- Hou, G.; Li, Y.; Yang, H.; Li, K.; Pan, Z. UID2021: An underwater image dataset for evaluation of no-reference quality assessment metrics. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 19, 1–24. [Google Scholar] [CrossRef]
- Wu, S.; Luo, T.; Jiang, G.; Yu, M.; Xu, H.; Zhu, Z.; Song, Y. A two-stage underwater enhancement network based on structure decomposition and characteristics of underwater imaging. IEEE J. Ocean. Eng. 2021, 46, 1213–1227. [Google Scholar] [CrossRef]
- Ding, D.; Gan, S.; Chen, L.; Wang, B. Learning-based underwater image enhancement: An efficient two-stream approach. Displays 2023, 76, 102337. [Google Scholar] [CrossRef]
- Yan, X.; Qin, W.; Wang, Y.; Wang, G.; Fu, X. Attention-guided dynamic multi-branch neural network for underwater image enhancement. Knowl.-Based Syst. 2022, 258, 110041. [Google Scholar] [CrossRef]
- Fu, X.; Cao, X. Underwater image enhancement with global–local networks and compressed-histogram equalization. Signal Process. Image Commun. 2020, 86, 115892. [Google Scholar] [CrossRef]
- Lin, Y.; Shen, L.; Wang, Z.; Wang, K.; Zhang, X. Attenuation coefficient guided two-stage network for underwater image restoration. IEEE Signal Process. Lett. 2020, 28, 199–203. [Google Scholar] [CrossRef]
- Yu, H.; Li, X.; Feng, Y.; Han, S. Multiple attentional path aggregation network for marine object detection. Appl. Intell. 2023, 53, 2434–2451. [Google Scholar] [CrossRef]
- Song, W.; Wang, Y.; Huang, D.; Liotta, A.; Perra, C. Enhancement of underwater images with statistical model of background light and optimization of transmission map. IEEE Trans. Broadcast. 2020, 66, 153–169. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.J.; Luo, P.; Sattar, J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. arXiv 2020, arXiv:2002.01155. [Google Scholar]
- Li, H.; Li, J.; Wang, W. A fusion adversarial underwater image enhancement network with a public test dataset. arXiv 2019, arXiv:1906.06819. [Google Scholar]
- Peng, Y.T.; Cosman, P.C. Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Wu, J.; Porikli, F.; Li, C. Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Trans. Image Process. 2022, 31, 5442–5455. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
- Wang, Y.; Li, N.; Li, Z.; Gu, Z.; Zheng, H.; Zheng, B.; Sun, M. An imaging-inspired no-reference underwater color image quality assessment metric. Comput. Electr. Eng. 2018, 70, 904–913. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Yan, J.; Li, J.; Fu, X. No-reference quality assessment of contrast-distorted images using contrast enhancement. arXiv 2019, arXiv:1904.08879. [Google Scholar]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagalingam, P.; Hegde, A.V. A review of quality metrics for fused image. Aquat. Procedia 2015, 4, 133–142. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
Dataset | Method | IBLA | GDCP | WaterNet | SMBL | Ucolor | HLRP | Ours |
---|---|---|---|---|---|---|---|---|
UIEB_val | PSNR | 17.9884 | 13.3856 | 17.3488 | 16.5970 | 20.9615 | 16.4516 | 23.1424 |
SSIM | 0.8048 | 0.7474 | 0.8132 | 0.7950 | 0.8635 | 0.6720 | 0.9119 | |
MSE | 0.0891 | 0.2281 | 0.1445 | 0.1601 | 0.0972 | 0.1650 | 0.0729 | |
FSIM | 0.9326 | 0.8988 | 0.9185 | 0.9229 | 0.9395 | 0.8464 | 0.9556 | |
CEIQ | 3.2835 | 3.2076 | 3.1008 | 3.3067 | 3.2090 | 3.2763 | 3.3734 | |
UIQM | 2.4900 | 2.6697 | 2.9165 | 2.5430 | 3.0495 | 2.1772 | 2.9566 | |
Average | 4.2350 | 3.4468 | 4.1589 | 4.0008 | 4.8210 | 3.8764 | 5.2112 | |
UIEB_test | CEIQ | 3.1802 | 3.1207 | 2.9826 | 3.1425 | 3.0533 | 2.7885 | 3.1624 |
UIQM | 1.8344 | 2.1100 | 2.3986 | 1.9039 | 2.4813 | 1.9850 | 2.5254 | |
Average | 2.5073 | 2.6154 | 2.6906 | 2.5232 | 2.7673 | 2.3868 | 2.8439 | |
U45 | CEIQ | 3.2491 | 3.1914 | 3.1863 | 3.2491 | 3.2826 | 3.2986 | 3.3178 |
UIQM | 2.3877 | 2.2750 | 2.9570 | 2.3877 | 3.1481 | 2.7960 | 2.9153 | |
Average | 2.8184 | 2.7332 | 3.0717 | 2.8184 | 3.2154 | 3.0473 | 3.1166 |
Metric | w/o FEnet | w/o ORSnet | w/o AFSM | w/o SFRM | Ours |
---|---|---|---|---|---|
PSNR | 20.7856 | 21.2991 | 22.8955 | 23.0597 | 23.1424 |
SSIM | 0.8582 | 0.8711 | 0.9066 | 0.9037 | 0.9119 |
MSE | 0.1025 | 0.0963 | 0.1141 | 0.1138 | 0.0729 |
FSIM | 0.8912 | 0.8943 | 0.9465 | 0.9480 | 0.9556 |
CEIQ | 3.2510 | 3.3271 | 3.3097 | 3.3540 | 3.3734 |
UIQM | 2.8512 | 2.9375 | 2.9009 | 2.9148 | 2.9566 |
Average | 4.7558 | 4.8721 | 5.1409 | 5.1777 | 5.2112 |
Metric | w/o ASSM | w/o ACSM | w/o EFSM | w/o SAM | w/o CAM | w/o | w/o | w/o | Ours |
---|---|---|---|---|---|---|---|---|---|
PSNR | 22.4899 | 22.5163 | 22.6754 | 23.0010 | 21.9513 | 22.0468 | 22.8911 | 22.8080 | 23.0597 |
SSIM | 0.8794 | 0.8990 | 0.8987 | 0.8115 | 0.9010 | 0.8905 | 0.8872 | 0.9024 | 0.9037 |
MSE | 0.1257 | 0.1191 | 0.1209 | 0.1300 | 0.1257 | 0.1180 | 0.1140 | 0.1148 | 0.1138 |
FSIM | 0.9169 | 0.9254 | 0.9447 | 0.9351 | 0.9194 | 0.9267 | 0.9099 | 0.9418 | 0.9480 |
CEIQ | 2.9867 | 2.9987 | 3.1182 | 3.0081 | 2.9971 | 3.1007 | 3.2016 | 3.2004 | 3.3540 |
UIQM | 2.8927 | 2.9001 | 2.8871 | 2.8775 | 2.9068 | 2.9111 | 2.9081 | 2.9051 | 2.9148 |
Average | 5.0067 | 5.0201 | 5.0672 | 5.0839 | 4.9250 | 4.6411 | 5.1140 | 5.1072 | 5.1777 |
Metric | w/o | w/o | w/o OLMS | w/o TLMS | w/o AFSM | Ours |
---|---|---|---|---|---|---|
PSNR | 22.8857 | 22.6449 | 21.9864 | 22.3551 | 22.0011 | 22.8955 |
SSIM | 0.9030 | 0.9022 | 0.8816 | 0.8927 | 0.8993 | 0.9066 |
MSE | 0.1187 | 0.1253 | 0.1307 | 0.1220 | 0.1146 | 0.1141 |
FSIM | 0.9305 | 0.9129 | 0.9317 | 0.9188 | 0.9092 | 0.9465 |
CEIQ | 3.2774 | 3.2835 | 3.0943 | 3.1742 | 3.1904 | 3.3097 |
UIQM | 2.6421 | 2.3569 | 2.9004 | 2.8928 | 2.8803 | 2.9009 |
Average | 5.0867 | 4.9959 | 4.9440 | 5.0186 | 4.9610 | 5.1409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Cao, W.; Zhou, J.; Peng, Y.-T.; Zhang, W.; Lin, Z. Two-Branch Underwater Image Enhancement and Original Resolution Information Optimization Strategy in Ocean Observation. J. Mar. Sci. Eng. 2023, 11, 1285. https://doi.org/10.3390/jmse11071285
Zhang D, Cao W, Zhou J, Peng Y-T, Zhang W, Lin Z. Two-Branch Underwater Image Enhancement and Original Resolution Information Optimization Strategy in Ocean Observation. Journal of Marine Science and Engineering. 2023; 11(7):1285. https://doi.org/10.3390/jmse11071285
Chicago/Turabian StyleZhang, Dehuan, Wei Cao, Jingchun Zhou, Yan-Tsung Peng, Weishi Zhang, and Zifan Lin. 2023. "Two-Branch Underwater Image Enhancement and Original Resolution Information Optimization Strategy in Ocean Observation" Journal of Marine Science and Engineering 11, no. 7: 1285. https://doi.org/10.3390/jmse11071285
APA StyleZhang, D., Cao, W., Zhou, J., Peng, Y. -T., Zhang, W., & Lin, Z. (2023). Two-Branch Underwater Image Enhancement and Original Resolution Information Optimization Strategy in Ocean Observation. Journal of Marine Science and Engineering, 11(7), 1285. https://doi.org/10.3390/jmse11071285