Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Work, Hydrological Surveys, and Water Sampling
2.3. Laboratory Analysis
3. Results
3.1. Characteristics of End Members
3.1.1. Salt and Isotopic Composition
3.1.2. Nutrients
3.2. Spatial Distribution of Characteristics Obtained by Profiling
3.3. Parameters of the Carbonate System, Chl-a and AOU in the Surface and Near-Bottom Water Layers
3.4. Nutrients in the Surface and Near-Bottom Water Layers
4. Discussion
4.1. River Feeding Sources and Nutrient Fluxes with River Runoff
4.2. OM Production/Destruction Balance
4.3. Potential Response of the Estuary Ecosystem to Nutrient Flux and Possible Cases of Red Tides
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nixon, S.F. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 1995, 41, 199–219. [Google Scholar] [CrossRef]
- Andersen, J.H.; Schlüter, L.; Ertebjerg, G. Coastal eutrophication: Recent developments in definitions and implications for monitoring strategies. J. Plan. Res. 2006, 28, 621–628. [Google Scholar] [CrossRef]
- Aoki, K.; Shimizu, Y.; Yamamoto, T.; Yokouchi, K.; Kishi, K.; Akada, H.; Kurogi, H. Estimation of inward nutrient flux from offshore into semi-enclosed sea (Tokyo Bay, Japan) based on in-situ data. Estuar. Coast. Shelf Sci. 2022, 274, 107930. [Google Scholar] [CrossRef]
- Howarth, R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Annu. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [Green Version]
- Glibert, P.M.; Anderson, D.M.; Gentien, P.; Granéli, E.; Sellner, K.G. The global, complex phenomena of harmful algal blooms. Oceanography 2005, 18, 136–147. [Google Scholar] [CrossRef]
- Glibert, P.M. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 2020, 91, 101583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gilbert, D.; Gooday, A.J.; Levin, L.; Naqvi, S.W.A.; Middelburg, J.J.; Scranton, M.; Ekau, W.; Peña, A.; Dewitte, B.; et al. Natural and human hypoxia and consequences for coastal areas: Synthesis and future development. Biogeosciences 2010, 7, 1443–1467. [Google Scholar] [CrossRef] [Green Version]
- Schmodtko, S.; Stramma, L.; Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 2017, 542, 335–339. [Google Scholar] [CrossRef]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Gregoire, M.; Chavez, F.P.; Conley, D.J.; Garcon, V.; Gilbert, D.; Gutierrez, D.; Isensee, K.; et al. Declining oxygen in the global and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef] [Green Version]
- Hodgkiss, I.; Ho, K. Are Changes in N: P Ratios in Coastal Waters the Key to Increased Red Tide Blooms? Springer: Berlin/Heidelberg, Germany, 1997; pp. 141–147. [Google Scholar]
- Paerl, H.W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol. Oceanogr. 1997, 42, 1154–1165. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Zhuang, Y.; Wang, Z.; Ou, L.; Cen, J.; Lu, S.; Qi, Y. Bioavailability of Organic Phosphorus Compounds to the Harmful Dinoflagellate Karenia mikimotoi. Microorganisms 2021, 9, 1961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-C.; Wang, Y.-F.; Song, M.-J.; Wang, J.-X.; Ji, N.J.; Liu, C.; Kong, F.-Z.; Yan, T.; Yu, R.C. First record of a Takayama bloom in Haizhou Bay in response to dissolved organic nitrogen and phosphorus. Mar. Poll. Bull. 2022, 178, 113572. [Google Scholar] [CrossRef]
- Medina, M.; Kaplan, D.; Milbrandt, E.C.; Tomasko, D.; Huffaker, R.; Angelini, C. Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida. Sci. Total Environ. 2022, 827, 154149. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.; Liu, H.; Xin, Q.; Hu, Q.; Wang, X.; Chen, J. Responses of Marine Diatom–Dinoflagellate Interspecific Competition to Different Phosphorus Sources. J. Mar. Sci. Eng. 2022, 10, 1972. [Google Scholar] [CrossRef]
- Tréguer, P.J.; De La Rocha, C.L. The World Ocean silica cycle. Ann. Rev. Mar. Sci. 2013, 5, 477–501. [Google Scholar] [CrossRef]
- Sarthou, G.; Timmermanns, K.R.; Blain, S.; Tréguer, P. Growth physiology and fate of diatoms in the ocean: A review. J. Sea Res. 2005, 53, 25–42. [Google Scholar] [CrossRef]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. (Eds.) Guide to Best Practices for Ocean CO2 Measurements; PICES Special Publication 3; PICES: Sidney, BC, Canada, 2007; 191p, Available online: http://hdl.handle.net/11329/249 (accessed on 31 October 2022).
- Symonds, R.B.; Reed, M.H.; Rose, W.I. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes. Geochim. Cosmoch. Acta 1992, 56, 633–657. [Google Scholar] [CrossRef]
- Li, Y.; Keppler, H. Nitrogen speciation in mantle and crustal fluids. Geochim. Cosmochim. Acta 2014, 129, 13–32. [Google Scholar] [CrossRef]
- Duggen, S.; Croot, P.; Schacht, U.; Hoffmann, L. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phyto-plankton growth: Evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. 2007, 34, L01612. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H.; Coale, K.H.; Johnson, K.S.; Fitzwater, S.E.; Gordon, R.M.; Tanner, S.J.; Hunter, C.N.; Elrod, V.A.; Nowicki, J.L.; Coley, T.L.; et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 1994, 371, 123–129. [Google Scholar] [CrossRef]
- Boyd, P.; Watson, A.; Law, C.; Abraham, E.; Trull, T.; Murdoch, R.; Bakker, D.; Bowie, A.; Buesseler, K.; Chang, H.; et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 2000, 407, 695–702. [Google Scholar] [CrossRef]
- Frogner, P.; Gislason, S.R.; Oskarsson, N. Fertilizing potential of volcanic ash in ocean surface water. Geology 2001, 29, 487–490. [Google Scholar] [CrossRef]
- Hoffmann, L.J.; Breitbarth, E.; Ardelan, M.V.; Duggen, S.; Olgun, N.; Hassellov, M.; Wangberg, S.-A. Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi. Mar. Chem. 2012, 132, 28–33. [Google Scholar] [CrossRef]
- Olgun, N.; Duggen, S.; Andronico, D.; Kutterolf, S.; Croot, P.L.; Giammanco, S.; Censi, P.; Randazzo, L. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: Results from nutri-ent-release experiments in seawater. Mar. Chem. 2013, 152, 32–42. [Google Scholar] [CrossRef]
- Browning, T.J.; Stone, K.; Bouman, H.A.; Mather, T.A.; Pyle, D.M.; Moore, M.C.; Martinez-Vicente, V. Volcanic ash supply to the surface ocean—Remote sensing of biological responses and their wider biogeochemical significance. Front. Mar. Sci. 2015, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Longman, J.; Palmer, M.R.; Gernon, T.M.; Manners, H.R. The role of tephra in enhancing organic carbon preservation in marine sediments. Earth Sci. Rev. 2019, 192, 480–490. [Google Scholar] [CrossRef]
- Watson, A.J. Volcanic iron, CO2, ocean productivity and climate. Nature 1997, 385, 587–588. [Google Scholar] [CrossRef]
- Hamme, R.C.; Webley, P.W.; Crawford, W.R.; Whitney, F.A.; DeGrandpre, M.D.; Emerson, S.R.; Eriksen, C.C.; Giesbrecht, K.E.; Gower, J.F.R.; Kavanaugh, M.T.; et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Yevenes, M.A.; Lagos, N.A.; Farías, L.; Vargas, C.A. Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): Implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption. Sci. Total Environ. 2019, 669, 49–61. [Google Scholar] [CrossRef]
- Sun, X.; Sun, W. How will volcanic ash from the Tonga volcano eruption perturbate marine carbon cycle? Solid Earth Sci. 2022, 7, 1–4. [Google Scholar] [CrossRef]
- Longman, J.; Palmer, M.R.; Gernon, T.M. Viability of greenhouse gas removal via artificial addition of volcanic ash to the ocean. Anthropocene 2020, 32, 100264. [Google Scholar] [CrossRef]
- Jones, M.T.; Gislason, S.R. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous en-vironments. Geochim. Cosmochim. Acta 2008, 72, 3661–3680. [Google Scholar] [CrossRef]
- Berezovskaya, V.A. Hydrochemical Regime of the Avacha Bay; Avtoref. dis. … kand. geogr.nauk: Rostov-na-Donu, Russia, 1988; 25p. (In Russian) [Google Scholar]
- Berezovskaya, V.A. Avacha Bay. Hydrochemical Regime, Anthropogenic Impact; KGARF: Petropavlovsk-Kamchatsky, Russia, 1999; 156p. (In Russian) [Google Scholar]
- Lepskaya, E.V.; Tepnin, O.B.; Kolomeitsev, V.V.; Ustimenko, E.A.; Sergeenko, N.V.; Vinogradova, D.S.; Sviridenko, V.D.; Pokho-dina, M.A.; Shchegolkova, V.A.; Maksimenkov, V.V.; et al. Historical review of research and the main results of the complex environmental monitoring of Avacha Bay in 2013. Res. Water Biol. Resour. Kamchatka Northwestern Part Pac. Ocean 2014, 34, 5–21. Available online: https://cyberleninka.ru/article/n/istoricheskiy-obzor-issledovaniy-i-osnovnye-rezultaty-kompleksnogo-ekologicheskogo-monitoringa-avachinskoy-guby-v-2013-g/viewer (accessed on 1 March 2023). (In Russian).
- Orlova, T.Y.; Aleksanin, A.I.; Lepskaya, E.V.; Efimova, K.V.; Selina, M.S.; Morozova, T.V.; Stonik, I.V.; Kachur, V.A.; Karpenko, A.A.; Vinnikov, K.A.; et al. A massive bloom of Karenia species (Dinophyceae) off the Kamchatka coast, Russia, in the fall of 2020. Harmful Algae 2022, 120, 102337. [Google Scholar] [CrossRef]
- Piip, B.I. Eruption of Avacha Sopka in 1945. Bull. Volcano 1953, 6–23, Art., 17. Available online: http://repo.kscnet.ru/1558/ (accessed on 1 March 2023). (In Russian).
- Kuksina, L. Variations of Water Runoff and Suspended Sediment Yield in the Kamchatsky Krai, Russia. Water 2018, 10, 1451. [Google Scholar] [CrossRef] [Green Version]
- Vaskovsky, M.G. Resursy Poverkhnostnykh vod SSSR Kamchatka V 20 Kamchatka; Gidrometeoizdat: Leningrad, Russia, 1973. (In Russian) [Google Scholar]
- Tishchenko, P.; Zhang, J.; Pavlova, G.; Tishchenko, P.; Sagalaev, S.; Shvetsova, M. Revisiting the Carbonate Chemistry of the Sea of Japan (East Sea): From Water Column to Sediment. J. Mar. Sci. Eng. 2022, 10, 438. [Google Scholar] [CrossRef]
- Dickson, A.G. pH scales and proton-transfer reactions in saline media such as sea water. Geochim. Cosmochim. Acta 1984, 48, 2299–2308. [Google Scholar] [CrossRef]
- Pavlova, G.Y.; Tishchenko, P.Y.; Volkova, T.I.; Dickson, A.; Wallmann, K. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 2008, 48, 438–443. [Google Scholar] [CrossRef]
- Grasshoff, K.; Ehrhard, M.; Kremling, K. Methods of Seawater Analysis; Verlag Chemie: Weinheim, Germany, 1983; p. 419. Available online: https://scholar.google.com/scholar_lookup?title=Methods+of+Seawater+Analysis&author=Grasshoff,+K.&author=Ehrhard,+M.&author=Kremling,+K.&publication_year=1983 (accessed on 1 March 2023).
- Martin, J.-M.; Meybeck, M. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Litvinenko, Y.S.; Zakharikhina, L.V. Chemical transformation of Kamchatka soils after input of products of volcanic eruption. Contemp. Probl. Ecol. 2017, 10, 686–699. [Google Scholar] [CrossRef]
- Nakano, T.; Yamada, Y.; Shin, K.-C. Effects of snow and land modification on an andesite lava aquifer in Chokai volcano, northwestern Japan. J. Hydrol. 2022, 612, 128191. [Google Scholar] [CrossRef]
- Cheshko, A.L. The formation of the main types of thermal waters of the Kuril-Kamchatka region based on the isotopic studies (D, 18O, 3He/4He). Geochemistry. 1994, 7, 988–1001. (In Russian) [Google Scholar]
- Mikhailik, T.A.; Tishchenko, P.Y.; Koltunov, A.M.; Tishchenko, P.P.; Shvetsova, M.G. The effect of Razdol’naya River on the environmental state of Amur Bay (the Sea of Japan). Water Res. 2011, 38, 512–521. [Google Scholar] [CrossRef]
- Sugimoto, R.; Tsuboi, T.; Fujita, M.S. Comprehensive and quantitative assessment of nitrate dynamics in two contrasting forested basins along the Sea of Japan using dual isotopes of nitrate. Sci. Total Environ. 2019, 687, 667–678. [Google Scholar] [CrossRef]
- Zhang, P.; Ruan, H.; Dai, P.; Zhao, L.; Zhang, J. Spatiotemporal river flux and composition of nutrients affecting adjacent coastal water quality in Hainan Island, China. J. Hydrol. 2020, 591, 125293. [Google Scholar] [CrossRef]
- Semkin, P.Y.; Tishchenko, P.Y.; Pavlova, G.Y.; Tishchenko, P.P.; Sagalaev, S.G.; Shkirnikova, E.M.; Shvetsova, M.G. The Carbonate System of the Estuaries of the Syran and Ul’ban Rivers (Ul’banskii Bay, the Sea of Okhotsk) during Spring Flood. Water Res. 2022, 49, 869–8791. [Google Scholar] [CrossRef]
- Ayris, P.M.; Delmelle, P. The immediate environmental effects of tephra emission. Bull. Volcanol. 2012, 74, 1905–1936. [Google Scholar] [CrossRef]
- Galeczka, I.; Sigurdsson, G.; Eiriksdottir, E.S.; Oelkers, E.H.; Gislason, S.R. The chemical composition of rivers and snow affected by the 2014/2015 Bárðarbunga eruption, Iceland. J. Volcanol. Geotherm. Res. 2016, 316, 101–119. [Google Scholar] [CrossRef]
- Mouri, G.; Che Ros, F.; Chalov, S. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments. Geomorphology 2014, 213, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Taran, Y.A.; Ryabinin, G.V.; Pokrovsky, B.G.; Nazhalova, I.N.; Malik, N.A. Mineral waters of the Avacha depression. Vestnik KRAUNTS. Earth Sci. 2021, 50, 22–39. (In Russian) [Google Scholar] [CrossRef]
- Zakharkov, S.P.; Lepskaya, Y.V.; Tepnin, O.B.; Shtraykhert, Y.A.; Gordeychuk, T.N. Pervichnaya produktsiya Avachinskoy bukhty letom 2017. Vestn. Dal’nevostochnogo Otd. Ross. Akad. Nauk. 2020, 1, 83–89. Available online: http://vestnikdvo.ru/index.php/vestnikdvo/article/view/523 (accessed on 1 March 2023). (In Russian).
- Zvalinsky, V.I.; Tishchenko, P.P.; Mikhailik, T.A.; Tishchenko, P.Y. Eutrophication of the Peter the Great Bay. In Oceanographic Studies of the Far Eastern Seas and the North-Western of the Pacific; Akulichev, V.A., Ed.; Dalnauka: Vladivostok, Russia, 2013; pp. 260–293. (In Russian) [Google Scholar]
- Sterner, R.W.; Elser, J.J. Ecological stoichiometry. In Ecological Stoichiometry; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Li, X.; Yan, T.; Yu, R.; Zhou, M. A review of karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism. Harmful Algae 2019, 90, 101702. [Google Scholar] [CrossRef]
- Talley, L.D. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). V. 2: Pacific Ocean; Sparrow, M., Chapman, P., Gould, J., Eds.; International WOCE Project Office: Southampton, UK, 2007. [Google Scholar]
- Ruttenberg, K.C.; Sulak, D.J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr) oxides in seawater. Geochim. Cosmoch. Acta 2011, 75, 4095–4112. [Google Scholar] [CrossRef]
- Froelich, P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanogr. 1988, 30, 649–668. [Google Scholar] [CrossRef]
- Mort, H.P.; Slomp, C.P.; Gustafsson, B.G.; Andersen, T.J. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions. Geochim. Cosmochim. Acta 2010, 74, 1350–1362. [Google Scholar] [CrossRef]
- Malik, N.A. Impaktny contribution of volcanic eruptions to formation of the chemical composition of seasonal snow cover (Kamchatka). Ice and snow. 2010, 4, 45–52. (In Russian) [Google Scholar]
- Kim, S.-H.; Lee, J.-S.; Kim, K.-T.; Kim, H.-C.; Lee, W.-C.; Choi, D.; Choi, S.-H.; Choi, J.-H.; Lee, H.-J.; Shin, J.-H. Aquaculture Farming Effect on Benthic Respiration and Nutrient Flux in Semi-Enclosed Coastal Waters of Korea. J. Mar. Sci. Eng. 2021, 9, 554. [Google Scholar] [CrossRef]
Months | In a Year | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
Amount of Precipitation | 108 | 84 | 167 | 110 | 66 | 64 | 93 | 96 | 93 | 115 | 174 | 111 | 1280 |
Temperature | −6.1 | −5.4 | −3.2 | 0.7 | 5.6 | 10.7 | 14.3 | 15.3 | 11.1 | 6.0 | −0.5 | −4.7 | 3.6 |
Snow thickness | 70 | 83 | 84 | 83 | 18 | 0 | 0 | 0 | 0 | 0 | 11 | 44 |
Cl− | Na | K+ mmol/kg | Ca2+ | Mg2+ | δ18O ‰ | δD ‰ | ||
Vilyucha River | 0.082 | 0.053 | 0.150 | 0.014 | 0.138 | 0.042 | −13.78 | −96.83 |
1.155 | 0.125 | 1.143 | 0.0437 | 0.213 | 0.165 | −13.79 | −96.07 | |
Avacha River | 0.101 | 0.151 | 0.219 | 0.028 | 0.250 | 0.108 | −16.23 | −118.28 |
0.140 | 0.144 | 0.264 | 0.023 | 0.262 | 0.106 | −15.54 | −111.16 | |
Waterfall | 0.052 | 0.023 | 0.085 | 0.003 | 0.186 | 0.039 | −13.37 | −97.66 |
SW upper layer | 510.610 | 26.4 | 439.5 | 9.46 | 9.45 | 49.54 | −1.08 | −8.58 |
PW Vilyucha Bay | 554.4 | 27.68 | 482.6 | 11.805 | 9.99 | 53.03 | ||
PW Avacha Bay | 536.2 | 24.812 | 464.1 | 11.058 | 9.772 | 50.657 | ||
DIP | DSi | NO2 | NO3 μmol/L | NH4 | DIN | Total P | Total N | |
Vilyucha River | 0.47 | 247.28 | 0.03 | 24.29 | 0.36 | 24.68 | 0.7 | 27.28 |
0.8 | 227.01 | 0.07 | 31.53 | 2.41 | 34.01 | 1.1 | 40.05 | |
Avacha River | 0.74 | 193.03 | 0.10 | 19.51 | 1.84 | 21.45 | 0.77 | 20.68 |
0.73 | 300.4 | 0.11 | 43.01 | 1.44 | 44.56 | 1.02 | 48.74 | |
Waterfall | 0.11 | 108.68 | 0.03 | 36.37 | 0.28 | 36.68 | 0.11 | 39.33 |
SW upper layer | 0.15 | 18.77 | 0.02 | 0.07 | 0.28 | 0.37 | 0.77 | 14.4 |
PW Vilyucha Bay | 40.71 | 440.5 | 1.3 | - | 69.1 | - | 83.45 | 3239 |
PW Avacha Bay | 92.08 | 565.72 | 0.46 | - | - | - | 147.65 | 1868 |
pH | TA mmol/kg | pCO2 μatm | DIC mmol/kg | Corg mgC/L | Hum mgC/L | Chl-a | O2 μmol/kg | |
Vilyucha River | 8.95 | 0.31 | 15.8 | 0.30 | 0.64 | 0.44 | 0.18 | 391.7 |
7.74 | 0.49 | 385 | 0.52 | 0.54 | 0.60 | |||
Avacha River | - | 0.532 | - | - | - | - | - | - |
- | 0.56 | - | - | - | - | - | - | |
Waterfall | 8.69 | 0.41 | 39.9 | 0.40 | 0.37 | - | - | - |
SW upper layer | 8.33 | 2.0 | 167.9 | 1.72 | 1.1 | 0.32 | 3.01 | 363.4 |
PW Vilyucha Bay | 7.32 | 3.7 | 3187 | 3.38 | 210.9 | 29.0 | 15.98 | - |
PW Avacha Bay | 7.23 | 6.2 | 7106 | 6.26 | 124.2 | 20.03 | 16.12 | - |
River | Discharge | FDIP | FPtot | FDSi | FDIN | FNtot |
---|---|---|---|---|---|---|
Vilyucha | 28 | 0.035 | 0.052 | 16.75 | 0.83 | 0.92 |
7 | 0.015 | 0.021 | 4.69 | 0.29 | 0.29 | |
Avacha | 288 | 0.571 | 0.59 | 134.49 | 7.2 | 7.47 |
77 | 0.151 | 0.21 | 55.96 | 4.15 | 4.15 | |
Waterfall | 0.3 | 0.00009 | 0.00009 | 0.079 | 0.013 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semkin, P.; Pavlova, G.; Lobanov, V.; Barabanshchikov, Y.; Kukla, S.; Sagalaev, S.; Shvetsova, M.; Shkirnikova, E.; Tishchenko, P.; Tibenko, E.; et al. Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka. J. Mar. Sci. Eng. 2023, 11, 1299. https://doi.org/10.3390/jmse11071299
Semkin P, Pavlova G, Lobanov V, Barabanshchikov Y, Kukla S, Sagalaev S, Shvetsova M, Shkirnikova E, Tishchenko P, Tibenko E, et al. Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka. Journal of Marine Science and Engineering. 2023; 11(7):1299. https://doi.org/10.3390/jmse11071299
Chicago/Turabian StyleSemkin, Pavel, Galina Pavlova, Vyacheslav Lobanov, Yuri Barabanshchikov, Sergey Kukla, Sergey Sagalaev, Maria Shvetsova, Elena Shkirnikova, Petr Tishchenko, Evgenia Tibenko, and et al. 2023. "Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka" Journal of Marine Science and Engineering 11, no. 7: 1299. https://doi.org/10.3390/jmse11071299
APA StyleSemkin, P., Pavlova, G., Lobanov, V., Barabanshchikov, Y., Kukla, S., Sagalaev, S., Shvetsova, M., Shkirnikova, E., Tishchenko, P., Tibenko, E., Ulanova, O., & Tishchenko, P. (2023). Nutrient Flux under the Influence of Melt Water Runoff from Volcanic Territories and Ecosystem Response of Vilyuchinskaya and Avachinskaya Bays in Southeastern Kamchatka. Journal of Marine Science and Engineering, 11(7), 1299. https://doi.org/10.3390/jmse11071299