A Cellulose Aerogel Made from Paper and Hemp Waste Added with Starch for the Sorption of Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of the Aerogel Samples
2.3. Investigation of the of Properties the Aerogel Samples
3. Results
3.1. Hydrophobicity Test Results of Aerogel Samples
3.2. Determination of Density and Porosity of Aerogel Samples
3.3. The Results of the Maximum Sorption Capacity of Aerogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ITOPF’s Annual Tanker Spill Statistics Show a Promising Start to the New Decade. Available online: https://www.itopf.org/news-events/news/itopfs-annual-tanker-spill-statistics-show-a-promising-start-to-the-new-decade/ (accessed on 4 January 2023).
- Li, H.; Liu, L.; Yang, F. Oleophilic polyurethane foams for oil spill cleanup. Procedia Environ. Sci. 2013, 18, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef] [PubMed]
- Paulauskiene, T.; Uebe, J.; Karasu, A.U.; Anne, O. Investigation of Cellulose-Based Aerogels for Oil Spill Removal. Water Air Soil Pollut. 2020, 231, 424. [Google Scholar] [CrossRef]
- Uebe, J.; Paulauskiene, T.; Boikovych, K. Cost-effective and recyclable aerogels from cellulose acetate for oil spills clean-up. Environ. Sci. Pollut. Res. 2021, 28, 36551–36558. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Uebe, J.; Ziogas, M. Cellulose aerogel composites as oil sorbents and their regeneration. PeerJ 2021, 9, e11795. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Teresiute, A.; Uebe, J.; Tadzijevas, A. Sustainable Cross-Linkers for the Synthesis of Cellulose-Based Aerogels: Research and Application. J. Mar. Sci. Eng. 2022, 10, 491. [Google Scholar] [CrossRef]
- Hüsing, N.; Schubert, U. Aerogels—Airy materials: Chemistry, structure and properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Cai, W.; Cao, Y.; Sun, Y.; Tan, F. Preparation of corn straw based spongy aerogel for spillage oil capture. Korean J. Chem. Eng. 2018, 35, 1119–1127. [Google Scholar] [CrossRef]
- Virtanen, T.; Svedström, K.; Andersson, S.; Tervala, L.; Torkkeli, M.; Knaapila, M.; Kotelnikova, N.; Maunu, S.L.; Serimaa, R. A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing. Cellulose 2012, 19, 219–235. [Google Scholar] [CrossRef]
- Rajanna, S.K.; Kumar, D.; Vinjamur, M.; Mukhopadhyay, M. Silica Aerogel Microparticles from Rice Husk Ash for Drug Delivery. Ind. Eng. Chem. Res. 2015, 54, 949–956. [Google Scholar] [CrossRef]
- Palma Rodríguez, H.M.; Delgado, R.S.; Olarte Paredes, A.; Salgado Delgado, A.M.; Hernández Uribe, J.P.; Pinedaa, E. Partial Characterization of Aerogels Made from Chayotextle and Potato Starch. Emir. J. Food Agric. 2022, 34, 634–641. [Google Scholar] [CrossRef]
- Feng, J.; Nguyen, S.T.; Fan, Z.; Duong, H.M. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem. Eng. J. 2015, 270, 168–175. [Google Scholar] [CrossRef]
- Liebner, F.; Potthast, A.; Rosenau, T.; Haimer, E.; Wendland, M. Cellulose aerogels: Highly porous, ultra-lightweight materials. Holzforschung 2008, 62, 129–135. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.L. Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A 2014, 2, 6337–6342. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, J.; Mishra, H.; Mishra, P.K.; Wimmer, R.; Ahmad, F.J.; Talegaonkar, S. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int. J. Nanomed. 2017, 12, 2021. [Google Scholar] [CrossRef] [Green Version]
- Zaman, A.; Huang, F.; Jiang, M.; Wei, W.; Zhou, Z. Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. Energy Built Environ. 2020, 1, 60–76. [Google Scholar] [CrossRef]
- Ferronato, N.; Torreta, V. Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [Green Version]
- Meng-Chuen Chen, D.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The world’s growing municipal solid waste: Trends and impacts. Environ. Res. Lett. 2020, 15, 074021. [Google Scholar] [CrossRef]
- Demirel Bayik, G.; Altin, A. Production of sorbent from paper industry solid waste for oil spill cleanup. Mar. Pollut. Bull. 2017, 125, 341–349. [Google Scholar] [CrossRef]
- Korhonen, O.; Budtova, T. All-cellulose composite aerogels and cryogels. Compos. Part A Appl. Sci. Manufact. 2020, 137, 106027. [Google Scholar] [CrossRef]
- Beluns, S.; Gaidukovs, S.; Platnieks, O.; Gaidukova, G.; Mierina, I.; Grase, L.; Starkova, O.; Brazdausks, P.; Kumar Thakur, V. From Wood and Hemp Biomass Wastes to Sustainable Nanocellulose Foams. Ind. Crops Prod. 2021, 170, 113780. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Ye, Y.; Qiu, Z.; Zhang, Y.; Yu, Z.; Sun, X.; Bressler, D.C.; Jiang, F. Superelastic and Ultralight Aerogel Assembled from Hemp Microfibers. Adv. Funct. Mater. 2023, 33, 2300893. [Google Scholar] [CrossRef]
- Kaur, J.; Sharma, K.; Kaushik, A. Waste hemp-stalk derived nutrient encapsulated aerogels for slow release of fertilizers: A step towards sustainable agriculture. J. Environ. Chem. Eng. 2023, 11, 109582. [Google Scholar] [CrossRef]
- Semlali Aouragh Hassani, F.-Z.; Hamid Salim, M.; Kassab, Z.; Sehaqui, H.; Ablouh, E.H.; Bouhfid, R.; El Kacem Qaiss, A.; El Achaby, M. Crosslinked starch-coated cellulosic papers as alternative food-packaging materials. RSC Adv. 2022, 12, 8536–8546. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Weng, Y.; Wang, Y. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers 2018, 10, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Wang, R.; Wan, J.; Zhang, Q.; Xue, S.; Wu, X.; Zhang, J.; Zhang, J.; Lu, Y.; Cong, W. Cellulose/microalgae composite films prepared in ionic liquids. Algal Res. 2016, 20, 135–141. [Google Scholar] [CrossRef]
- Pereira, L.S.; Feitosa, J.P.; Morais, J.P.S.; de Freitas Rosa, M. Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties. Carbohydr. Polym. 2020, 250, 116927. [Google Scholar] [CrossRef]
- Ahmed, Y.M.Z.; Ewais, E.M.M.; El-Sheikh, S.M. Potato starch consolidation of aqueous HA suspension. J. Asian Ceram. Soc. 2015, 3, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Aerogel.org. 2023. Available online: https://www.aerogel.org/ (accessed on 5 June 2023).
- Illera, D.; Mesa, J.; Gomez, H.; Maury, H. Cellulose Aerogels for Thermal Insulation in Buildings: Trends and Challenges. Coatings 2018, 13, 345. [Google Scholar] [CrossRef] [Green Version]
- Chung, V.N.; Nguyen, T.S.; Huynh, K.P.H.; Chau, N.D.Q. Fabrication of Cellulose Aerogel from Waste Paper and Banana Peel for Water Treatment. Chem. Eng. Trans. 2022, 97, 337–342. [Google Scholar]
- Nguyen, H.S.H.; Phan, H.H.; Huynh, H.K.P.; Nguyen, S.T.; Nguyen, V.T.T.; Phan, A.N. Understanding the effects of cellulose fibers from various pre-treated barley straw on properties of aerogels. Fuel Process. Technol. 2022, 236, 107425. [Google Scholar] [CrossRef]
- Bigdoli, H.; Mortazavi, Y.; Khodadadi, A.A. A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: Synthesis and characterization. J. Hazard. Mater. 2019, 366, 229–239. [Google Scholar] [CrossRef]
Starch in (g) | Water in (mL) | Cardboard in (g) | Water in (mL) |
---|---|---|---|
0.1 | 20 | 1 | 80 |
0.2 | 2 | ||
0.3 | 3 | ||
0.4 | 4 | ||
0.5 | 5 |
Starch in (g) | Hemp Fibres in (g) | Water in (mL) | Cardboard in (g) | Water in (mL) |
---|---|---|---|---|
0.05 | 0.05 | 20 | 1 | 80 |
0.1 | 0.1 | 20 | 2 | 80 |
0.15 | 0.15 | 20 | 3 | 80 |
0.2 | 0.2 | 20 | 4 | 80 |
0.25 | 0.25 | 20 | 5 | 80 |
K0.1-P1 | K0.2-P2 | K0.3-P3 | K0.4-P4 | K0.5-P5 |
---|---|---|---|---|
(115 ± 3)° | (122 ± 4)° | (121 ± 4)° | (114 ± 6)° | (109 ± 5)° |
K0.05-KA0.05-P1 | K0.1-KA0.1-P2 | K0.15-KA0.15-P3 | K0.2-KA0.2-P4 | K0.25-KA0.25-P5 |
---|---|---|---|---|
(100 ± 1)° | (114 ± 6)° | (114 ± 6)° | (118 ± 7)° | (120 ± 6)° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulauskiene, T.; Sirtaute, E.; Uebe, J. A Cellulose Aerogel Made from Paper and Hemp Waste Added with Starch for the Sorption of Oil. J. Mar. Sci. Eng. 2023, 11, 1343. https://doi.org/10.3390/jmse11071343
Paulauskiene T, Sirtaute E, Uebe J. A Cellulose Aerogel Made from Paper and Hemp Waste Added with Starch for the Sorption of Oil. Journal of Marine Science and Engineering. 2023; 11(7):1343. https://doi.org/10.3390/jmse11071343
Chicago/Turabian StylePaulauskiene, Tatjana, Egle Sirtaute, and Jochen Uebe. 2023. "A Cellulose Aerogel Made from Paper and Hemp Waste Added with Starch for the Sorption of Oil" Journal of Marine Science and Engineering 11, no. 7: 1343. https://doi.org/10.3390/jmse11071343
APA StylePaulauskiene, T., Sirtaute, E., & Uebe, J. (2023). A Cellulose Aerogel Made from Paper and Hemp Waste Added with Starch for the Sorption of Oil. Journal of Marine Science and Engineering, 11(7), 1343. https://doi.org/10.3390/jmse11071343