The Intensification of Prolonged Cooling Climate-Exacerbated Late Ordovician–Early Silurian Mass Extinction: A Case Study from the Wufeng Formation–Longmaxi Formation in the Sichuan Basin
Abstract
:1. Introduction
2. Regional Geology
2.1. Geological Background
2.2. Stratigraphic and Sedimentary Environment
- (1)
- Sequence SQ1 corresponds to the Wufeng Formation and developed the transgressive systems tract (TST). The TST was mainly composed of gray-black siliceous shale (Figure 2a) and supplied black carbonaceous shale (Figure 2b). In the TST, the sea level rose, the available space increased, and the input of detritus became insufficient. The process of increasing the mud content upwards formed a set of fine-grained deposits dominated by black mudstone, black carbonaceous shale, and black siliceous rock. Horizontal bedding was developed on shale (Figure 2b), and graptolite-rich shale can be observed in the Wufeng Formation (Figure 2a), corresponding to the deep-water cemented continental shelf microfacies. The thin mudstone at the top of the Wufeng Formation is the regressive systems tract (RST) (Figure 2), which corresponds to the global ice epoch event with the lowest sea level.
- (2)
- Sequence SQ2 corresponds to the bottom-middle part of the Longmaxi Formation (depth 1204–1160 m). From 1204 to 1192 m is the TST, corresponding to the deep-water cemented continental shelf microfacies. The sea level rose, the available space increased, and the supply of detritus became insufficient. The TST process was a rise in the mud content. From 1192 to 1160 m was the RST, corresponding to the deep-water sandy continental shelf and deep-water cemented continental shelf microfacies. The RST reflects the decline in sea levels, reduction in available space, increase in detritus supply, and process of decreasing mud content and increasing sand content upwards (Figure 2). The lithology is composed of carbonaceous shale, siliceous carbonaceous shale, carbonaceous siltstone sandstone, and carbonaceous shale. Calcareous nodules can be observed (Figure 2c).
- (3)
- Sequence SQ3 corresponds to the middle-upper part of the Longmaxi Formation (depth 1160–1080 m) and developed a TST and RST (1160–1080 m). Among them, the lithologies of the 1160–1146 m section are composed of siltstone cemented rock, carbonaceous mud shale (Figure 2d), siltstone shale, carbonaceous siltstone sandstone, and muddy siltstone sandstone. The siltstone shale developed horizontal bedding (Figure 2e). The TST corresponds to the deep water sandy continental shelf, reflecting the rising sea level, increasing available space, and insufficient debris supply. The RST developed two subfacies—deep-water continental shelf subfacies and shallow-water continental shelf subfacies—and four microfacies—deep-water cemented continental shelf, deep-water sandy continental shelf, shallow-water cemented continental shelf, and shallow-water sandy continental shelf microfacies (Figure 2). The natural gamma value increases from bottom to top, reflecting a decrease in mud content from bottom to top. The sea level decreased and the supply of terrestrial detritus filled the accommodation space.
3. Materials and Methodology
3.1. Materials
3.2. Methodology
- (1)
- Whole-rock major element testing
- (2)
- Whole-rock TOC testing
- (3)
- Whole-rock clay mineral testing
3.3. Index Reliability Evaluation
- (1)
- Chemical Index of Alteration (CIA)
- (2)
- Chemical Weathering Index (CIW)
4. Result
4.1. TOC and Major Elements Characteristics
4.2. Chemical Weathering Index Characteristics
4.3. Clay Mineralogy Content Characteristics
4.4. Clay Mineral Indices Characteristics
5. Discussion
5.1. Clay Mineral Content and Paleoclimate
5.2. Clay Mineral Specific Values and Paleoclimate
5.3. Chemical Weathering Index and Paleoclimate
5.4. Late Ordovician–Early Silurian Climate Cools
6. Conclusions
- (1)
- Based on logging curves and lithological characteristics, the Wufeng Formation–Longmaxi Formation in the Yucan-1 Well is divided into three third-order sequences: SQ1, SQ2, and SQ3. SQ1 is located in the Wufeng Formation and developed TST and RST, dominated by deep-water calcareous shelf microfacies and shallow-water calcareous shelf. SQ2 mainly developed TST and RST, dominated by deep-water calcareous shelf and deep-water sandy shelf microfacies. SQ3 mainly developed TST and RST, dominated by deep-water sandy shelf, deep-water calcareous shelf, shallow-water calcareous shelf, and shallow-water sandy shelf microfacies. In the Guanyinqiao member, the sea level was at its lowest point, and then recovered to the sea level height of the early Wufeng Formation, followed by a decrease in sea levels. This reflects the overall fluctuation in sea levels from high–low–high–low in the Wufeng Formation–Longmaxi Formation.
- (2)
- Based on the characteristics of TOC, clay minerals and oxide content, (I/C), (S + I/S)/(I + C), CIA, CIA-error, CIW, PIA, MAP, and LST parameters in the shale of the Wufeng Formation–Longmaxi Formation, the Wufeng Formation–Longmaxi Formation is divided into three sedimentary periods. The first period is the Wufeng Formation. Weathering degree, surface temperatures, and rainfall gradually decreased. The climate changed from warm and humid to cold and dry. This corresponds to two pulse mass extinction events and was a stage of increasing organic carbon burial. The second period is the bottom of the Longmaxi Formation. Weathering degrees, surface temperatures, and rainfall were at low levels. Later, the period was dominated by a dry and cold climate. It was the main stage of organic carbon burial. The third period is from the upper part to the top of the Longmaxi Formation. Weathering degrees, surface temperatures, and rainfall gradually increased. The climate changed from cold and dry to warm and humid. Organic carbon burial gradually decreased and sea levels decreased.
- (3)
- Based on the paleoclimate evolution characteristics of the shale of the Wufeng Formation–Longmaxi Formation, the study of the climate cooling event in the late Ordovician–Early Silurian period has deepened our understanding of the first pulse mass extinction event in the Phanerozoic. It is believed that after the pulse mass extinction at the end of the late Ordovician period (LOME-1, LOME-2), the cold and dry climate may have persisted until approximately 438.76 Ma (Stimulograptus sedgwickii Zone), causing a second extinction of organisms that escaped the late Ordovician extinction. The extent may not be as severe as the LOME extinction. Afterwards, the climate returned to the warm and humid climatic environment from before the LOME extinction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rong, J.Y.; Fan, J.X.; Miller, A.I.; Li, G.X. Dynamic patterns of latest Proterozoic-Paleozoic-Early Mesozoic marine biodiversity in South China. Geol. J. 2007, 42, 431–454. [Google Scholar]
- Berner, R.A. Atmospheric carbon dioxide levels over phanerozoic time. Science 1990, 249, 1382–1386. [Google Scholar] [CrossRef]
- Yapp, C.J.; Poths, H. Ancient atmospheric CO2 pressures inferred from natural goethites. Nature 1992, 355, 342–344. [Google Scholar] [CrossRef]
- Brenchley, P.J.; Marshall, J.D.; Carden, G.A.F.; Robertson, D.B.R.; Long, D.G.F.; Meidla, T.; Hints, L.; Anderson, T.F. Bathymetric and isotopic evidence for a short-lived Late Ordovician Glaciation in a Greenhouse Period. Geology 1994, 22, 295–298. [Google Scholar] [CrossRef]
- Finnegan, S.; Bergmann, K.; Eiler, J.M.; Jones, D.S.; Fike, D.A.; Eisenman, I.; Hughes, N.C.; Tripati, A.K.; Fischer, W.W. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science 2011, 331, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Stanley, S.M. Temperature and biotic crises in the marine realm. Geology 1984, 12, 205–208. [Google Scholar] [CrossRef]
- Wilde, P.; Berry, W.B.N. Destabilization of the oceanic density structure and its significance to marine “extinction” events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1984, 48, 143–162. [Google Scholar] [CrossRef]
- Sheehan, P.M. The Late Ordovician mass extinction. Annu. Rev. Earth Planet Sci. 2001, 29, 331–364. [Google Scholar] [CrossRef]
- Histon, K.; Klein, P.; Schönlaub, H.P.; Huff, W.D. Lower Palaeozoic K-bentonites from the Carnic Alps, Austria. Aust. J. Earth Sci. 2007, 100, 26–42. [Google Scholar]
- Huff, W.D. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras. Quat. Int. 2008, 178, 276–287. [Google Scholar] [CrossRef]
- Hu, Y.H.; Sun, W.D.; Ding, X.; Wang, F.Y.; Ling, M.X.; Liu, J. Volcanic event at the OrdovicianSilurian boundary: The message from K-bentonite of Yangtze Block. Acta Pet. Sin. 2009, 25, 3298–3308, (In Chinese with English abstract). [Google Scholar]
- Kozik, N.P.; Gill, B.C.; Owens, J.D.; Lyons, T.W.; Young, S.A. Geochemical records reveal protracted and differential marine redox change associated with Late Ordovician climate and mass extinctions. AGU Adv. 2022, 3, e2021AV000563. [Google Scholar] [CrossRef]
- Bond, D.P.G.; Grasby, S.E. Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology 2020, 48, 777–781. [Google Scholar] [CrossRef]
- Longman, J.; Mills, B.J.W.; Manners, H.R.; Gernon, T.M.; Palmer, M.R. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nat. Geosci. 2021, 14, 924–929. [Google Scholar] [CrossRef]
- Saupe, E.E.; Qiao, H.J.; Donnadieu, Y.; Farnsworth, A.; Kennedy-Asser, A.; Ladant, J.B.; Lunt, D.J.; Pohl, A.; Valdes, P.; Finnegan, S. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 2020, 13, 65–70. [Google Scholar] [CrossRef]
- Lenton, T.M.; Crouch, M.; Johnson, M.; Pires, N.; Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 2012, 5, 86–89. [Google Scholar] [CrossRef]
- Shen, J.; Pearson, A.; Henkes, G.A.; Zhang, Y.G.; Chen, K.; Li, D.; Wankel, S.D.; Finney, S.C.; Shen, Y. Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation. Nat. Geosci. 2018, 11, 510–514. [Google Scholar] [CrossRef]
- Harperb, D.A.T.; Hammarlund, E.U.; Rasmussen, C.M.Ø. End Ordovician extinctions: A coincidence of causes. Gondwana Res. 2014, 25, 1294–1307. [Google Scholar] [CrossRef]
- He, L.; Wang, Y.P.; Chen, D.F. Geochemical features of sedimentary environment and paleoclimate during Late Ordovician to Early Silurian in southern Sichuan Basin. Geochimica 2021, 50, 623–634. (In Chinese) [Google Scholar]
- Yang, X.R.; Yan, D.T.; Zhang, L.W.; Zhang, B.; Xu, H.W.; Liu, W.H.; Yun, J.L. The Genesis of Hirnantian Glaciation and Paleo-Ocean Environment During Ordovician-Silurian Transition. Acta Sedimentol. Sin. 2018, 36, 319–332. (In Chinese) [Google Scholar]
- Pohl, A.; Nardin, E.; Vandenbroucke, T.R.A.; Donnadieu, Y. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 58, 39–51. [Google Scholar] [CrossRef]
- Tobin, K.J.; Bergstr, M.S.M. Implications of Ordovician (≈460 Myr) marine cement for constraining seawater temperature and atmospheric pCO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 181, 399–417. [Google Scholar] [CrossRef]
- Tobin, K.J.; Bergstr, M.S.M.; De, L.; Garza, P.A. Mid-Caradocian (453 Ma) drawdown in atmospheric pCO2 without ice sheet development? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 226, 187–204. [Google Scholar] [CrossRef]
- Yapp, C.J.; Poths, H. Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth Planet. Sci. Lett. 1996, 137, 72–82. [Google Scholar] [CrossRef]
- Gibbs, M.T.; Barron, E.J.; Kump, L.R. An atmospheric pCO2 threshold for glaciation in the Late Ordovician. Geology 1997, 25, 447–450. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Patzkowsky, M.E.; Pollard, D. Obliquity forcing with 8-12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation. Geology 2003, 31, 485–488. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Cocks, L.R. Gondwana from top to base in space and time. Gondwana Res. 2013, 24, 999–1030. [Google Scholar] [CrossRef]
- Li, Y.F.; Schieber, J.; Fan, T.L.; Li, Z.Y.; Zhang, J.P. Regional depositional changes and their controls on carbon and sulfur cycling across the Ordovician-Silurian boundary, northwestern Guizhou, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 485, 816–832. [Google Scholar] [CrossRef]
- Rong, J.Y.; Chen, X.; Wang, Y.; Zhan, R.; Liu, J.; Huang, B.; Tang, P.; Wu, C.; Wang, G. Northward expansion of Central Guizhou Old land through the Ordovician and Silurian transition: Evidence and implications. Sci. China Earth Sci. 2011, 41, 1407–1415. [Google Scholar]
- Yan, D.; Chen, D.; Wang, Q.; Wang, J. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China. Geology 2010, 38, 599–602. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Wang, Y.M.; Li, X.J.; Huang, J.L.; Wang, S.H.; Guang, Q.Z.; Zhang, C.C.; Wang, H.Y.; Liu, H.L.; et al. Shale gas in China: Characteristics, challenges and prospects (I). Pet. Explor. Dev. 2015, 42, 753–767. [Google Scholar] [CrossRef]
- Zhang, S.; Barnes, C.R. Late Ordovician-Early Silurian (Ashgillian-Llandovery) sea level curve derived from conodont community analysis, Anticosti Island, Québec. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 180, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.Y.; Fan, J.X.; Zhang, S.H.; Fang, X.; Chen, Z.Y.; Shi, Y.K.; Wang, H.W.; Wang, X.B.; Yang, J.; Hou, X.D.; et al. Timing and patterns of the great Ordovician biodiversification event and Late Ordovician mass extinction: Perspectives from South China. Earth Sci. Rev. 2021, 220, 103743. [Google Scholar] [CrossRef]
- Rong, J.Y. Ecostratigraphic evidence of regression and influence of glaciation of Late Ordovician in the Upper Yangtze area. Stratigr. J. 1984, 8, 9–20. [Google Scholar]
- Rasmussen, C.M.Ø.; Kröger, B.; Nielsen, M.L.; Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl. Acad. Sci. USA 2019, 116, 7207–7213. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, T.R.A.; Armstrong, H.A.; Williams, M.; Paris, F.; Zalasiewicz, J.A.; Sabbe, K.; Nolvak, J.; Challands, T.J.; Verniers, J.; Servais, T. Polar foront shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse. Proc. Natl. Acad. Sci. USA 2010, 107, 14983–14986. [Google Scholar] [CrossRef]
- Stanley SM Climatic cooling and mass extinction of Paleozoic reef communities. Palaios 1988, 3, 228–232. [CrossRef]
- Kump, L.R.; Arthur, M.A.; Patzkowsky, M.E.; Gibbs, M.T.; Pinkus, D.S.; Sheehan, P.M. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 152, 173–187. [Google Scholar] [CrossRef]
- Brenchley, P.J. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geol. Soc. Am. Bull. 2003, 115, 89–104. [Google Scholar] [CrossRef]
- Zou, C.N.; Qiu, Z.; Poulton, S.W.; Dong, D.Z.; Wang, H.Y.; Chen, D.Z.; Lu, B.; Shi, Z.S.; Tao, H.F. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology 2018, 46, 535–538. [Google Scholar] [CrossRef]
- Luo, G.M.; Algeo, T.J.; Zhan, R.B.; Yan, D.T.; Huang, J.H.; Liu, J.S.; Xie, S.C. Perturbation of the marine nitrogen cycle during the Late Ordovician glaciation and mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 448, 339–348. [Google Scholar] [CrossRef]
- Xiong, X.H.; Wang, J.; Xiong, G.Q.; Wang, Z.J.; Men, Y.P.; Zhou, X.L.; Zhou, Y.X.; Yang, X.; Deng, Q. Geological characteristics and exploration direction of shale gas in Wufeng Formation-Longmaxi Formation in northeast Chongqing. Acta Geol. Sin. 2018, 92, 1948–1958. (In Chinese) [Google Scholar]
- Li, G. Simulation Study on Shale Reservoir Characteristics and Pore Evolution of Longmaxi Formation in Chengkou Area, Northeast Chongqing. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2019. (In Chinese). [Google Scholar]
- Grim, R.E. Crystal Structures of Clay Minerals and Their X-ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society: London, UK, 1980; 495p. [Google Scholar]
- Johns, W.D.; Grim, R.E.; Bradley, W.F. Quantitative estimations of clay minerals by diffraction methods. J. Sediment. Res. 1954, 24, 242–251. [Google Scholar]
- Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geol. Soc. Am. Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Kübler, B.; Les, A. indicateurs de métamorphisme. Rev. L′Inst. Fr. Pét. 1964, 19, 1093–1112. [Google Scholar]
- Wang, H.J.; Zhou, J. On the indices of illite crystallinity. Acta Petrol. Sin. 1998, 14, 395–405. (In Chinese) [Google Scholar]
- Wang, P.; Du, Y.; Yu, W.; Algeo, T.J.; Zhou, Q.; Xu, Y.; Qi, L.; Yuan, L.; Pan, W. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth Sci. Rev. 2020, 201, 103032. [Google Scholar] [CrossRef]
- Mclennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochim. Cosmochim. Acta 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Yang, J.H.; Peter, A.C.; Du, Y.H.; Feng, B.; Yan, J.X. Global continental weathering trends across the Early Permian glacial to post glacial transition: Correlatinghigh-and low-paleolatitude sedimentary record. Geology 2014, 42, 835–838. [Google Scholar] [CrossRef] [Green Version]
- Harnois, L. The CIW index: A new chemical index of weathering. Sediment. Geol. 1988, 55, 319–322. [Google Scholar] [CrossRef]
- Sheldon, N.D.; Retallack, G.; Tanaka, S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. J. Geol. 2002, 110, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Garzanti, E.; Padoan, M.; Setti, M.; Najman, Y.; Peruta, L.; Villa, I.M. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochem. Geophys. Geosyst. 2013, 14, 292–316. [Google Scholar] [CrossRef] [Green Version]
- Fagel, N. Chapter Four Clay Minerals, Deep Circulation and Climate. In Developments in Marine Geology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 139–176. [Google Scholar]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Chen, T.; Wang, H.; Zhang, Z.Q. Clay minerals as indicators of paleoclimate. Acta Petrol. Mineral. 2003, 22, 416–420. (In Chinese) [Google Scholar]
- Liu, L.H. Crystallinity of Illite and Clay Mineral Compositions of Quaternary red Clay in Southern Anhui Province, Southeast China. Master’s Thesis, Zhejiang Normal University, Zhejiang, China, 2012; pp. 1–53. (In Chinese). [Google Scholar]
- Yang, S.Y.; Li, C.X.; Cai, J.G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic Palaeoenvironmental changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 229, 287–302. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Markovics, G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochim. Cosmochim. Acta 1997, 61, 1653–1670. [Google Scholar] [CrossRef]
- Wei, G.J.; Liu, Y.; Li, X.H.; Shao, L.; Fang, D.Y. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 212, 331–334. [Google Scholar] [CrossRef]
- Tang, Y.J.; Jia, J.Y.; Xie, X.D. Environment significance of clay minerals. Earth Sci. Front. 2002, 9, 337–344. (In Chinese) [Google Scholar]
- Bain, D.C. The weathering of chloritic minerals in some Scottish soils. Eur. J. Soil Sci. 1977, 28, 144–164. [Google Scholar] [CrossRef]
- Sun, Q.F.; Colin, C.; Chen, F.H.; Zhang, J.W. A discussion on the factors affecting Formation and quantity of clay minerals in climatic and environmental researches. Acta Petrol. Mineral. 2011, 30, 291–300. (In Chinese) [Google Scholar]
- Gao, Y.; Gao, Y.; Ibarra, D.E.; Du, X.; Dong, T.; Liu, Z.; Wang, C. Clay mineralogical evidence for mid-latitude terrestrial climate change from the latest Cretaceous through the earliest Paleogene in the Songliao Basin, NE China. Cretac. Res. 2021, 124, 104827. [Google Scholar] [CrossRef]
- Chamley, H. Clay Sedimentology; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Zhang, H.Y.; Yang, W.T. Research Status of Deep-time Paleoclimate Analysis Methods for Terrestrial Pulveryte and Paleosols. Acta Sedimentol. Sin. 2023, 41, 333–348. (In Chinese) [Google Scholar]
- Song, E. Clay Mineralogy of the Gerze Sediments and Pal- Aeoclimatic Evolution in the Central Qinghai-Tibetan Plateau. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2014; pp. 1–116. (In Chinese). [Google Scholar]
- Zhang, Z.B.; Xu, Y.; Miao, Y.J.; Wang, W.F.; Zhao, D.F.; Chen, D.L. Provenance and Sedimentary Environment of Paleogene Gongjue Formation in Qamdo Basin. Acta Sediment. Sin. 2022, 40, 1561–1581. (In Chinese) [Google Scholar]
- Jones, D.S.; Fike, D.A. Dynamic sulfur and carbon cycling through the End-Ordovician extinction revealed by paired sulfate-pyrite δ34S. Earth Planet. Sci. Lett. 2013, 363, 144–155. [Google Scholar] [CrossRef]
- Bartlett, R.; Elrick, M.; Wheeley, J.R.; Polyak, V.; Desrochers, A.; Asmerom, Y. Abrupt global-ocean anoxia during the Late Ordovician–Early Silurian detected using uranium isotopes of marine carbonates. Proc. Natl. Acad. Sci. USA 2018, 115, 5896–5901. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.Q.; Yang, Z.Y.; Ross, N.M.; Tong, Y.B.; Zhu, M.; Wan, B. Ordovician–Silurian true polar wander as a mechanism for severe glaciation and mass extinction. Nat. Commun. 2022, 13, 7941. [Google Scholar] [CrossRef]
- Qiu, Z.; Lu, B.; Chen, Z.H.; Zhang, R.; Dong, D.Z.; Wang, H.Y.; Qiu, J.L. Discussion of the Relationship between Volcanic Ash Layers and Organic Enrichment of Black Shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin. Acta Sedimentol. Sin. 2019, 37, 1296–1308. (In Chinese) [Google Scholar]
- Zhang, Z.; Guo, Y.; Zhao, D.; Zhang, J.; Zeng, C.; Li, Y. Control Model of Organic Shale Enrichment by TerrigenousWeathering inWufeng Formation–LongmaxiFormation, Southeast Sichuan, China. Minerals 2023, 13, 761. [Google Scholar] [CrossRef]
- Lu, X.; Kendall, B.; Stein, H.J.; Li, C.; Hannah, J.L.; Gordon, G.W.; Ebbestad, J.O.R. Marine redox conditions during deposition of Late Ordovician and Early Silurian organic-rich mudrocks in the Siljan ring district, central Sweden. Chem. Geol. 2017, 457, 75–94. [Google Scholar] [CrossRef]
- Kampschulte, A.; Strauss, H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 2004, 204, 255–286. [Google Scholar] [CrossRef]
- Present, T.M.; Paris, G.; Burke, A.; Fischer, W.W.; Adkins, J.F. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata. Earth Planet. Sci. Lett. 2015, 432, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Goldman, D.; Sadler, P.M.; Leslie, S.A. Chapter 20—The Ordovician Period; Elsevier: Amsterdam, The Netherlands, 2020; pp. 489–523.79. [Google Scholar]
Sample | F m | Depth | TiO2 | FeO | Fe2O3 | Na2O | MgO | SiO2 | K2O | CaO | P2O5 | Al2O3 | CIA-Error | CIA | CIW | PIA | LST | MAP/mm/yr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YC1-1 | Long maxi | 1105.80 | 0.64 | 3.27 | 2.37 | 1.16 | 2.29 | 66.65 | 3.41 | 0.64 | 0.24 | 9.24 | 68.94 | 67.69 | 90.23 | 85.36 | 12.21 | 227.40 |
YC1-5 | 1109.38 | 0.51 | 1.17 | 3.23 | 0.95 | 1.18 | 74.82 | 2.12 | 0.39 | 0.20 | 9.34 | 77.83 | 76.98 | 93.28 | 91.47 | 17.41 | 224.31 | |
YC1-14 | 1116.54 | 0.58 | 1.56 | 3.33 | 1.19 | 1.89 | 62.16 | 2.94 | 2.51 | 0.28 | 3.41 | 41.67 | 39.06 | 58.89 | 16.49 | −3.83 | 225.50 | |
YC1-24 | 1126.10 | 0.60 | 1.58 | 4.18 | 0.95 | 1.97 | 61.09 | 3.38 | 1.02 | 0.28 | 3.11 | 45.04 | 41.32 | 75.00 | −35.22 | −2.56 | 225.36 | |
YC1-35 | 1135.30 | 0.59 | 1.48 | 3.71 | 1.13 | 1.93 | 63.02 | 3.38 | 0.81 | 0.23 | 3.22 | 44.28 | 41.42 | 73.29 | −15.79 | −2.50 | 226.51 | |
YC1-44 | 1141.39 | 0.49 | 0.84 | 4.1 | 1.06 | 1.58 | 68.72 | 2.64 | 1.25 | 0.22 | 9.27 | 69.60 | 68.73 | 85.46 | 80.79 | 12.79 | 224.75 | |
YC1-54 | 1148.10 | 0.45 | 1.54 | 2.76 | 0.84 | 4.43 | 56.23 | 2.455 | 6.31 | 0.20 | 3.18 | 52.87 | 43.47 | 65.43 | 30.15 | −1.36 | 226.90 | |
YC1-63 | 1156.65 | 0.27 | 0.47 | 2.52 | 0.52 | 0.76 | 78.51 | 1.37 | 1.38 | 0.19 | 8.43 | 78.59 | 77.77 | 89.02 | 87.16 | 17.85 | 226.87 | |
YC1-74 | 1166.10 | 0.38 | 0.45 | 3.93 | 1.00 | 0.91 | 69.79 | 2.00 | 1.09 | 0.28 | 9.18 | 75.42 | 74.41 | 88.81 | 86.13 | 15.97 | 225.71 | |
YC1-84 | 1173.84 | 0.29 | 0.64 | 3.48 | 0.67 | 9.71 | 41.87 | 1.513 | 12.17 | 0.29 | 4.58 | 71.18 | 61.62 | 77.36 | 69.59 | 8.81 | 226.38 | |
YC1-94 | 1182.51 | 0.24 | 0.74 | 2.07 | 0.78 | 0.67 | 81.06 | 1.2 | 1.03 | 0.19 | 6.32 | 73.46 | 72.67 | 84.30 | 81.31 | 15.00 | 227.01 | |
YC1-104 | 1190.52 | 0.25 | 1.13 | 1.69 | 0.62 | 0.79 | 77.99 | 1.32 | 0.98 | 0.20 | 8.43 | 79.56 | 78.91 | 90.03 | 88.40 | 18.49 | 226.87 | |
YC1-114 | 1198.27 | 0.14 | 1.54 | 1.05 | 0.35 | 0.78 | 88.67 | 0.72 | 1.1 | 0.10 | 5.54 | 80.49 | 79.60 | 88.78 | 87.32 | 18.87 | 227.82 | |
YC1-126 | Wufeng | 1209.13 | 0.15 | 2.41 | 1.04 | 0.27 | 0.59 | 87.65 | 0.62 | 0.83 | 0.11 | 15.29 | 93.07 | 92.95 | 96.59 | 96.45 | 26.35 | 222.12 |
F m | Sample | Depth | TOC | Clay Mineral Content (%) | Mixed-Layer Ratio (S%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K | C | I | S | I/S | C/S | I/S | C/S | ||||
Longmaxi | YC1-1 | 1105.80 | 0.24 | 3 | 5 | 13 | / | 74 | 5 | 6 | 17 |
YC1-5 | 1109.38 | 2.03 | 2 | 4 | 11 | / | 79 | 4 | 6 | 21 | |
YC1-7 | 1110.90 | 0.50 | 3 | 9 | 22 | / | 57 | 9 | 6 | 12 | |
YC1-9 | 1112.30 | 2.37 | 1 | 4 | 14 | / | 76 | 5 | 7 | 12 | |
YC1-12 | 1115.00 | 1.72 | 3 | 5 | 15 | / | 68 | 9 | 6 | 14 | |
YC1-14 | 1116.54 | 2.10 | 1 | 3 | 8 | / | 82 | 6 | 7 | 12 | |
YC1-17 | 1119.36 | 2.14 | 2 | 4 | 13 | / | 76 | 5 | 8 | 16 | |
YC1-19 | 1121.00 | 0.95 | 2 | 1 | 8 | / | 84 | 5 | 8 | 11 | |
YC1-24 | 1126.10 | 2.09 | / | / | 13 | / | 87 | / | 9 | / | |
YC1-26 | 1127.50 | 3.05 | 1 | 2 | 9 | / | 86 | 2 | 8 | 11 | |
YC1-29 | 1130.05 | 3.65 | 1 | 2 | 7 | / | 88 | 2 | 6 | 15 | |
YC1-32 | 1133.10 | 3.98 | 1 | 2 | 10 | / | 85 | 2 | 8 | 24 | |
YC1-35 | 1135.30 | 3.62 | / | 1 | 9 | / | 88 | 2 | 8 | 20 | |
YC1-39 | 1138.00 | 2.79 | 1 | 2 | 11 | / | 83 | 3 | 9 | 11 | |
YC1-41 | 1139.60 | 4.09 | / | 1 | 7 | / | 89 | 3 | 9 | 17 | |
YC1-44 | 1141.39 | 3.31 | / | 1 | 7 | / | 89 | 3 | 7 | 10 | |
YC1-47 | 1142.80 | 4.00 | / | 1 | 10 | / | 88 | 1 | 8 | 12 | |
YC1-49 | 1144.20 | 2.78 | / | / | 9 | / | 89 | 2 | 7 | 19 | |
YC1-52 | 1146.60 | 2.64 | / | 1 | 11 | / | 86 | 2 | 7 | 14 | |
YC1-54 | 1148.10 | 3.17 | / | / | 6 | / | 93 | 1 | 8 | 15 | |
YC1-58 | 1151.50 | 2.90 | / | / | 5 | / | 95 | / | 9 | / | |
YC1-61 | 1154.60 | 2.96 | / | / | 7 | / | 93 | / | 8 | / | |
YC1-63 | 1156.65 | 3.41 | / | / | 7 | / | 93 | / | 9 | / | |
YC1-68 | 1160.36 | 3.33 | / | / | 7 | / | 93 | / | 8 | / | |
YC1-72 | 1164.03 | 5.97 | / | / | 8 | / | 92 | / | 8 | / | |
YC1-74 | 1166.10 | 4.64 | / | / | 11 | / | 89 | / | 6 | / | |
YC1-78 | 1168.70 | 4.26 | / | / | 7 | / | 93 | / | 6 | / | |
YC1-81 | 1171.35 | 4.90 | / | / | 6 | / | 94 | / | 8 | / | |
YC1-84 | 1173.84 | 6.11 | / | / | 6 | / | 94 | / | 9 | / | |
YC1-86 | 1176.16 | 5.31 | / | / | 7 | / | 93 | / | 7 | / | |
YC1-89 | 1179.05 | 3.97 | / | / | 6 | / | 94 | / | 9 | / | |
YC1-92 | 1181.40 | 5.13 | / | / | 8 | / | 92 | / | 9 | / | |
YC1-94 | 1182.51 | 3.26 | / | / | 17 | / | 83 | / | 7 | / | |
YC1-96 | 1184.59 | 4.87 | / | / | 6 | / | 94 | / | 9 | / | |
YC1-102 | 1189.10 | 3.02 | / | / | 9 | / | 91 | / | 7 | / | |
YC1-104 | 1190.52 | 4.74 | / | / | 8 | / | 92 | / | 8 | / | |
YC1-109 | 1195.13 | 4.38 | / | / | 8 | / | 92 | / | 7 | / | |
YC1-114 | 1198.27 | 4.36 | / | 1 | 7 | / | 86 | 6 | 9 | 22 | |
YC1-118 | 1201.20 | 4.69 | / | / | 7 | / | 93 | / | 7 | / | |
Wufeng | YC1-121 | 1204.00 | 3.15 | 1 | 2 | 8 | / | 83 | 6 | 7 | 16 |
YC1-123 | 1206.70 | 2.70 | 2 | 3 | 10 | / | 63 | 22 | 7 | 17 | |
YC1-126 | 1209.13 | 1.30 | 1 | 3 | 12 | / | 75 | 9 | 5 | 15 | |
YC1-128 | 1211.07 | 1.01 | / | / | 18 | / | 82 | / | 6 | / | |
YC1-132 | 1214.95 | 1.47 | 2 | 3 | 7 | / | 81 | 7 | 7 | 16 | |
YC1-134 | 1217.00 | 2.18 | 1 | 3 | 8 | / | 84 | 4 | 8 | 14 | |
YC1-136 | 1219.00 | 1.12 | 3 | 3 | 8 | / | 79 | 7 | 8 | 14 |
Fm | Sample | TOC | [(S + I/S)/(I + C)] | I/C | CIA-error | CIA | CIW | PIA | LST (°C) | MAP/mm/yr | Al2O3/TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Longmaxi | YC1-1 | 0.24 | 0.72 | 2.60 | 68.94 | 67.69 | 90.23 | 85.36 | 12.21 | 227.40 | 14.44 |
YC1-5 | 2.03 | 0.73 | 2.75 | 77.83 | 76.98 | 93.28 | 91.47 | 17.41 | 224.31 | 18.31 | |
YC1-7 | 0.50 | 0.71 | 2.44 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-9 | 2.37 | 0.78 | 3.50 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-12 | 1.72 | 0.75 | 3.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-14 | 2.10 | 0.73 | 2.67 | 41.67 | 39.06 | 58.89 | 16.49 | −3.83 | 225.50 | 5.88 | |
YC1-17 | 2.14 | 0.76 | 3.25 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-19 | 0.95 | 0.89 | 8.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-24 | 2.09 | 0.93 | 13.00 | 45.04 | 41.32 | 75.00 | −35.22 | −2.56 | 225.36 | 5.18 | |
YC1-26 | 3.05 | 0.82 | 4.50 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-29 | 3.65 | 0.78 | 3.50 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-32 | 3.98 | 0.83 | 5.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-35 | 3.62 | 0.90 | 9.00 | 44.28 | 41.42 | 73.29 | −15.79 | −2.50 | 226.51 | 5.46 | |
YC1-39 | 2.79 | 0.85 | 5.50 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-41 | 4.09 | 0.88 | 7.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-44 | 3.31 | 0.88 | 7.00 | 69.60 | 68.73 | 85.46 | 80.79 | 12.79 | 224.75 | 18.92 | |
YC1-47 | 4.00 | 0.91 | 10.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-49 | 2.78 | 0.90 | 9.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-52 | 2.64 | 0.92 | 11.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-54 | 3.17 | 0.86 | 6.00 | 52.87 | 43.47 | 65.43 | 30.15 | −1.36 | 226.90 | 7.07 | |
YC1-58 | 2.90 | 0.83 | 5.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-61 | 2.96 | 0.88 | 7.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-63 | 3.41 | 0.88 | 7.00 | 78.59 | 77.77 | 89.02 | 87.16 | 17.85 | 226.87 | 31.22 | |
YC1-68 | 3.33 | 0.88 | 7.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-72 | 5.97 | 0.89 | 8.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-74 | 4.64 | 0.92 | 11.00 | 75.42 | 74.41 | 88.81 | 86.13 | 15.97 | 225.71 | 24.16 | |
YC1-78 | 4.26 | 0.88 | 7.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-81 | 4.90 | 0.86 | 6.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-84 | 6.11 | 0.86 | 6.00 | 71.18 | 61.62 | 77.36 | 69.59 | 8.81 | 226.38 | 15.81 | |
YC1-86 | 5.31 | 0.88 | 7.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-89 | 3.97 | 0.86 | 6.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-92 | 5.13 | 0.89 | 8.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-94 | 3.26 | 0.94 | 17.00 | 73.46 | 72.67 | 84.30 | 81.31 | 15.00 | 227.01 | 26.32 | |
YC1-96 | 4.87 | 0.86 | 6.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-102 | 3.02 | 0.90 | 9.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-104 | 4.74 | 0.89 | 8.00 | 79.56 | 78.91 | 90.03 | 88.40 | 18.49 | 226.87 | 33.70 | |
YC1-109 | 4.38 | 0.89 | 8.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-114 | 4.36 | 0.88 | 7.00 | 80.49 | 79.60 | 88.78 | 87.32 | 18.87 | 227.82 | 39.58 | |
YC1-118 | 4.69 | 0.88 | 7.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
Wufeng | YC1-121 | 3.15 | 0.80 | 4.00 | / | / | □/ | □/ | □/ | □/ | □/ |
YC1-123 | 2.70 | 0.77 | 3.33 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-126 | 1.30 | 0.80 | 4.00 | 93.07 | 92.95 | 96.59 | 96.45 | 26.35 | 222.12 | 101.93 | |
YC1-128 | 1.01 | 0.95 | 18.00 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-132 | 1.47 | 0.70 | 2.33 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-134 | 2.18 | 0.73 | 2.67 | / | / | □/ | □/ | □/ | □/ | □/ | |
YC1-136 | 1.12 | 0.73 | 2.67 | / | / | □/ | □/ | □/ | □/ | □/ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Guo, Y.; Wei, H.; Zeng, C.; Zhang, J.; Zhao, D. The Intensification of Prolonged Cooling Climate-Exacerbated Late Ordovician–Early Silurian Mass Extinction: A Case Study from the Wufeng Formation–Longmaxi Formation in the Sichuan Basin. J. Mar. Sci. Eng. 2023, 11, 1401. https://doi.org/10.3390/jmse11071401
Zhang Z, Guo Y, Wei H, Zeng C, Zhang J, Zhao D. The Intensification of Prolonged Cooling Climate-Exacerbated Late Ordovician–Early Silurian Mass Extinction: A Case Study from the Wufeng Formation–Longmaxi Formation in the Sichuan Basin. Journal of Marine Science and Engineering. 2023; 11(7):1401. https://doi.org/10.3390/jmse11071401
Chicago/Turabian StyleZhang, Zhibo, Yinghai Guo, Hengye Wei, Chunlin Zeng, Jiaming Zhang, and Difei Zhao. 2023. "The Intensification of Prolonged Cooling Climate-Exacerbated Late Ordovician–Early Silurian Mass Extinction: A Case Study from the Wufeng Formation–Longmaxi Formation in the Sichuan Basin" Journal of Marine Science and Engineering 11, no. 7: 1401. https://doi.org/10.3390/jmse11071401
APA StyleZhang, Z., Guo, Y., Wei, H., Zeng, C., Zhang, J., & Zhao, D. (2023). The Intensification of Prolonged Cooling Climate-Exacerbated Late Ordovician–Early Silurian Mass Extinction: A Case Study from the Wufeng Formation–Longmaxi Formation in the Sichuan Basin. Journal of Marine Science and Engineering, 11(7), 1401. https://doi.org/10.3390/jmse11071401