Ontology Framework for Sustainability Evaluation of Cement–Steel-Slag-Stabilized Soft Soil Based on Life Cycle Assessment Approach
Abstract
:1. Introduction
2. Life Cycle Assessment Methodology
2.1. Goal and Scope Definition
2.2. Life Cycle Inventory
2.3. Life Cycle Environmental Impact Assessment
2.4. Life Cycle Economic Impact Assessment
2.5. Sustainability Index
3. Design and Development of Ontology Framework
3.1. System Framework
3.2. The Development of OntoESS
3.2.1. Define Hierarchy and Classes
3.2.2. Define Properties of Classes
3.2.3. Define SWRL Rules
3.2.4. Define SQWRL Rules
4. Case Study
4.1. Case Study Description
4.2. The Application of OntoESS
4.2.1. Impact Analysis of Steel Slag Preparation
4.2.2. Impact Analysis of SCSs
4.2.3. Sensitivity Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zentar, R.; Wang, H.; Wang, D. Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material. Constr. Build. Mater. 2021, 279, 122447. [Google Scholar] [CrossRef]
- Xue, Z.J.; Tang, X.W.; Yang, Q.; Tian, Z.; Zhang, Y.; Xu, W. Mechanism of electro-osmotic chemical for clay improvement: Process analysis and clay property evolution. Appl. Clay Sci. 2018, 166, 18–26. [Google Scholar] [CrossRef]
- Dong, Y.K.; Cui, L.; Zhang, X. Multiple-GPU for three dimensional MPM based on single-root complex. Int. J. Numer. Methods Eng. 2022, 123, 1481–1504. [Google Scholar] [CrossRef]
- Gilazghi, S.T.; Huang, J.; Rezaeimalek, S.; Bin-Shafique, S. Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization. Eng. Geol. 2016, 211, 171–178. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Ebid, A.M.; Nwobia, L.I.; Obianyo, I.I. Shrinkage limit Multi-AI-Based predictive models for sustainable utilization of activated rice husk ash for treating expansive pavement subgrade. Transp. Infrastruct. Geotechnol. 2021, 9, 835–853. [Google Scholar] [CrossRef]
- Diaz-Loya, I.; Juenger, M.; Seraj, S.; Minkara, R. Extending supplementary cementitious material resources: Reclaimed and remediated fly ash and natural pozzolans. Cem. Concr. Compos. 2019, 101, 44–51. [Google Scholar] [CrossRef]
- Ali, M.B.; Saidur, R.; Hossain, M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Ebid, A.M.; Onyia, M.E.; Amanamba, E.C. Estimating the swelling potential of non-carbon-based binder (NCBB)-treated clayey soil for sustainable green subgrade using AI (GP, ANN and EPR) techniques. Int. J. Low-Carbon Technol. 2022, 17, 807–815. [Google Scholar] [CrossRef]
- Anastasiou, E.; Georgiadis Filikas, K.; Stefanidou, M. Utilization of fine recycled aggregates in concrete with fly ash and steel slag. Constr. Build. Mater. 2014, 50, 154–161. [Google Scholar] [CrossRef]
- Verian, K.P.; Behnood, A. Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials. Cem. Concr. Compos. 2018, 90, 27–41. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Ebid, A.M.; Egwu, U.; Onyia, M.E.; Onah, H.N.; Nwobia, L.I.; Onwughara, I.; Firooz, A.A. Erodibility of Nanocomposite-Improved Unsaturated Soil Using Genetic Programming, Artificial Neural Networks, and Evolutionary Polynomial Regression Techniques. Sustainability 2022, 14, 7403. [Google Scholar] [CrossRef]
- Shao, X.; Mehdizadeh, H.; Li, L.F.; Ling, T.C. Life cycle assessment of upcycling waste slag via CO2 pre-treatment: Comparative study of carbonation routes. J. Clean. Prod. 2022, 378, 134115. [Google Scholar] [CrossRef]
- Jia, R.Q.; Liu, J.X.; Jia, R.Q. A study of factors that influence the hydration activity of mono-component CaO and bi-component CaO/Ca2Fe2O5 systems. Cem. Concr. Res. 2017, 91, 123–132. [Google Scholar] [CrossRef]
- Liu, S.H.; Li, L.H. Influence of fineness on the cementitious properties of steel slag. J. Therm. Anal. Calorim. 2014, 117, 629–634. [Google Scholar] [CrossRef]
- Wang, D.; Chang, J.; Ansari, W.S. The effects of carbonation and hydration on the mineralogy and microstructure of basic oxygen furnace slag products. J. CO2 Util. 2019, 34, 87–98. [Google Scholar] [CrossRef]
- Nielsen, P.; Boone, M.A.; Horckmans, L.; Snellings, R.; Quaghebeur, M. Accelerated carbonation of steel slag monoliths at low CO2 pressure—Microstructure and strength development. J. CO2 Util. 2020, 36, 124–134. [Google Scholar] [CrossRef]
- Ghouleh, Z.; Guthrie, R.I.L.; Shao, Y. High-strength KOBM steel slag binder activated by carbonation. Constr. Build. Mater. 2015, 99, 175–183. [Google Scholar] [CrossRef]
- Cui, C.Y.; Yu, C.Y.; Zhao, J.Y.; Zheng, J.J. Steel Slag/Precarbonated Steel Slag as a Partial Substitute for Portland Cement: Effect on the Mechanical Properties and Microstructure of Stabilized Soils. KSCE J. Civ. Eng. 2022, 26, 3803–3814. [Google Scholar] [CrossRef]
- Yu, C.Y.; Cui, C.Y.; Wang, Y.; Zhao, J.Y.; Wu, Y.J. Strength performance and microstructural evolution of carbonated steel slag stabilized soils in the laboratory scale. Eng. Geol. 2021, 295, 106410. [Google Scholar] [CrossRef]
- Khoo, H.H.; Bu, J.; Wong, R.L.; Kuan, S.Y.; Sharratt, P.N. Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Procedia 2011, 4, 2494–2501. [Google Scholar] [CrossRef] [Green Version]
- Van den Heede, P.; De Belie, N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012, 34, 431–442. [Google Scholar] [CrossRef]
- Ghasemi, S.; Costa, G.; Zingaretti, D.; Bäbler, M.U.; Baciocchi, R. Comparative Life-cycle Assessment of Slurry and Wet Accelerated Carbonation of BOF Slag. Energy Procedia 2017, 114, 5393–5403. [Google Scholar] [CrossRef]
- Li, L.F.; Jiang, Y.; Pan, S.Y.; Ling, T.C. Comparative life cycle assessment to maximize CO2 sequestration of steel slag products. Constr. Build. Mater. 2021, 298, 123876. [Google Scholar] [CrossRef]
- Bertin, B.; Scuturici, V.M.; Pinon, J.M.; Risler, E. A semantic approach to life cycle assessment applied on energy environmental impact data management. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, Berlin, Germany, 26–30 March 2012; pp. 87–94. [Google Scholar] [CrossRef]
- Zhang, J.S.; Li, H.J.; Zhao, Y.H.; Ren, G.Q. An ontology-based approach supporting holistic structural design with the consideration of safety, environmental impact and cost. Adv. Eng. Softw. 2018, 115, 26–39. [Google Scholar] [CrossRef]
- Zhong, B.T.; Wu, H.T.; Li, H.; Sepasgozar, S.; Luo, H.B.; He, L. A scientometric analysis and critical review of construction related ontology research. Autom. Constr. 2019, 101, 17–31. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Luo, X.F.; Buis, J.J.; Sutherland, J.W. LCA-oriented semantic representation for the product life cycle. J. Clean. Prod. 2015, 86, 146–162. [Google Scholar] [CrossRef]
- Hou, S.J.; Li, H.Z.; Rezgui, Y. Ontology-based approach for structural design considering low embodied energy and carbon. Energy Build. 2015, 102, 75–90. [Google Scholar] [CrossRef]
- Meng, K.; Cui, C.Y.; Li, H.J.; Liu, H.L. Ontology-Based Approach Supporting Multi-Objective Holistic Decision Making for Energy Pile System. Buildings 2022, 12, 236. [Google Scholar] [CrossRef]
- Cui, C.Y.; Xu, M.Z.; Xu, C.S.; Zhang, P.; Zhao, J.T. An ontology-based probabilistic framework for comprehensive seismic risk evaluation of subway stations by combining Monte Carlo simulation. Tunn. Undergr. Space Technol. 2023, 135, 105055. [Google Scholar] [CrossRef]
- Bala, A.; Raugei, M.; Benveniste, G.; Gazulla, C.; Fullana, P.; Pere, A. Simplified tools for global warming potential evaluation: When ‘good enough’ is best. Int. J. Life Cycle Assess. 2010, 15, 489–498. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022 Mitigation of Climate Change, Retrieved December 18, 2022. Available online: https://www.ipcc.ch/ (accessed on 13 July 2023).
- Jones, G.H.C. Embodied Carbon—The ICE Database. 2023. Available online: https://circularecology.com/embodied-carbon-footprint-database.html (accessed on 13 July 2023).
- GB/T51366-2019; Standard for Building Carbon Emissions Calculation. China Architecture and Building Press: Beijing, China, 2019.
- Li, L.F.; Ling, T.C.; Pan, S.Y. Environmental benefit assessment of steel slag utilization and carbonation: A systematic review. Sci. Total Environ. 2022, 806, 150280. [Google Scholar] [CrossRef] [PubMed]
- ISO 14040; Environmental Management-Life Cycle Assessment: Principles and Framework. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 13 July 2023).
- CCement. Spot Prices of Lead Industry in China. 2023. Available online: https://www.price.ccement.com/ (accessed on 13 July 2023).
- Damineli, B.L.; Kemeid, F.M.; Aguiar, P.S.; John, V.M. Measuring the eco-efficiency of cement use. Cem. Concr. Compos. 2010, 32, 555–562. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, Z.M.; Li, W.J. Storing OWL ontologies in object-oriented databases. Knowl.-Based. System. 2015, 76, 240–255. [Google Scholar] [CrossRef]
- Chen, R.C.; Huang, Y.H.; Bau, C.T.; Chen, S.M. A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection. Expert Syst. Appl. 2012, 39, 3995–4006. [Google Scholar] [CrossRef]
- Ma, Z.L.; Liu, Z. Ontology- and freeware-based platform for rapid development of BIM applications with reasoning support. Autom. Constr. 2018, 90, 1–8. [Google Scholar] [CrossRef]
- Song, Q.F.; Guo, M.Z.; Wang, L.; Ling, T.C. Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resour. Conserv. Recycl. 2021, 173, 10574. [Google Scholar] [CrossRef]
- Gullu, H.; Canakci, H.; Al Zangan, I.F. Use of cement based grout with glass powder for deep mixing. Constr. Build. Mater. 2017, 137, 12–20. [Google Scholar] [CrossRef]
- Hessouh, J.J.M.M.; Eslami, J.; Beaucour, A.L.; Noumowe, A.; Mathieu, F.; Gotteland, P. Physical and mechanical characterization of deep soil mixing (DSM) materials: Laboratory vs construction site. Constr. Build. Mater. 2023, 368, 130436. [Google Scholar] [CrossRef]
- Chen, Z.M.; Li, R.; Zheng, X.M.; Liu, J.X. Carbon sequestration of steel slag and carbonation for activating RO phase. Cem. Concr. Res. 2021, 139, 106271. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.X.; Qi, L.Q. Effects of temperature and carbonation curing on the mechanical properties of steel slag-cement binding materials. Constr. Build. Mater. 2016, 124, 999–1006. [Google Scholar] [CrossRef]
- Meng, T.; Qiang, Y.J.; Hu, A.F.; Xu, C.T.; Lin, L. Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment. Constr. Build. Mater. 2017, 151, 775–781. [Google Scholar] [CrossRef]
- Coffetti, D.; Crotti, E.; Gazzaniga, G.; Carrara, M.; Pastore, T.; Coppola, L. Pathways towards sustainable concrete. Cem. Concr. Res. 2022, 154, 106718. [Google Scholar] [CrossRef]
- GJ/T 526-2018; Stabilizer for Soft Soil. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2018.
- Ghadir, P.; Zamanian, M.; Mahbubi-Motlagh, N.; Siberian, L.J.; Ranjbar, N. Shear strength and life cycle assessment of volcanic ash-based geopolymer and cement stabilized soil: A comparative study. Transp. Geotech. 2021, 31, 100639. [Google Scholar] [CrossRef]
- MolaAbasi, H.; Kharazmi, P.; Khajeh, A.; Saberian, M.; Chenari, R.; Harandi, M.; Li, J. Low plasticity clay stabilized with cement and zeolite: An experimental and environmental impact study. Resour. Conserv. Recycl. 2022, 184, 106408. [Google Scholar] [CrossRef]
Cement Production (CO2-mf) | Electricity (CO2-ef) | Transportation (CO2-tf) |
---|---|---|
(kgCO2-eq/t) | (kgCO2-eq/kWh) | (kgCO2-eq/t-km) |
735 | 0.7769 | 0.162 |
Cement (Costmc) | Steel Slag (Costms) | Transportation (Costtf) | Electricity (Costef) |
---|---|---|---|
(USD/t) | (USD/t) | (USD/t-km) | (USD/kWh) |
67.8 | 10 | 0.14 | 0.145 |
Rule 1 | Calculating total carbon emission of SCSs: |
Stabilized_Soil(?SS)^CO2_Cement(?SS,?CO2C)^CO2_Stabilizer(?SS, ?CO2S)^CO2_Transportation(?SS,?CO2T)^ CO2_Avoided_Landfilling(?SS,?CO2a)^swrlb:add(?x, ?CO2C, ?CO2S, ?CO2T)^swrlb:subtract(?total_CO2, ?x, ?CO2a) -> Total_CO2 (?SS, ?total_CO2) |
Parameter | Value | |
---|---|---|
Initial water content (%) | 61.12 | |
Liquid limit (%) | 38.2 | |
Plastic limit (%) | 19.2 | |
Plasticity index | 18.7 | |
Clay fraction (%) | <0.002 mm | 5.1 |
Silt fraction (%) | 0.002–0.075 mm | 55.2 |
Sand fraction (%) | 0.075–2 mm | 39.7 |
Optimum water content (%) | 11.7 | |
Maximum dry density (g/cm3) | 1.92 |
Sample | CaO | SiO2 | Fe2O3 | Al2O3 | MgO | MnO | TiO2 | Others |
---|---|---|---|---|---|---|---|---|
Soft soil | 5.6 | 43.8 | 8.65 | 22.50 | 6.41 | - | - | 10 |
Cement | 61.12 | 21.46 | 2.88 | 5.25 | 2.08 | - | - | 2.5 |
Steel slag | 39.02 | 14.45 | 23.42 | 3.83 | 7.27 | 7.31 | 1.35 | 1.1 |
Material | Transport Distance (km) | |
---|---|---|
Plant | Landfill | |
Cement | 21 | - |
Steel slag | 58 | 35 |
Designated Name | Steel Slag Substitution Ratio (%) | Binder Mixtures (kg) | UCS60d (kPa) | |
---|---|---|---|---|
Cement | Steel Slag | |||
S-C | 0 | 288 | 0 | 2070.2 |
S-CSS | 10 | 259.2 | 28.8 | 1919.92 |
20 | 230.4 | 57.6 | 1727.86 | |
30 | 204.6 | 86.4 | 1331.41 | |
50 | 144 | 144 | 793.66 | |
S-FSS | 10 | 259.2 | 28.8 | 2032.2 |
20 | 230.4 | 57.6 | 1681.93 | |
30 | 204.6 | 86.4 | 1214.95 | |
50 | 144 | 144 | 988.44 | |
S-FSS-C-2h | 10 | 259.2 | 28.8 | 1949.23 |
20 | 230.4 | 57.6 | 1651.62 | |
30 | 204.6 | 86.4 | 1404.69 | |
50 | 144 | 144 | 916.29 | |
S-FSS-C-18h | 10 | 259.2 | 28.8 | 2267.32 |
20 | 230.4 | 57.6 | 1975.27 | |
30 | 204.6 | 86.4 | 1345.3 | |
50 | 144 | 144 | 842.16 |
Types | Transportation | Avoided Landfilling | Grinding | CO2 Uptake | Total |
---|---|---|---|---|---|
CSS | 0.54 | −0.3265 | - | - | 0.2135 |
FSS | 0.54 | −0.3265 | 3.35 | - | 3.5635 |
FSS-C-2h | 0.54 | −0.3265 | 3.35 | −2.88 | 0.6835 |
FSS-C-18h | 0.54 | −0.3265 | 3.35 | −5.814 | −1.6205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Yuan, J.; Cui, C.; Zhao, J.; Liu, F.; Li, G. Ontology Framework for Sustainability Evaluation of Cement–Steel-Slag-Stabilized Soft Soil Based on Life Cycle Assessment Approach. J. Mar. Sci. Eng. 2023, 11, 1418. https://doi.org/10.3390/jmse11071418
Yu C, Yuan J, Cui C, Zhao J, Liu F, Li G. Ontology Framework for Sustainability Evaluation of Cement–Steel-Slag-Stabilized Soft Soil Based on Life Cycle Assessment Approach. Journal of Marine Science and Engineering. 2023; 11(7):1418. https://doi.org/10.3390/jmse11071418
Chicago/Turabian StyleYu, Chunyang, Jia Yuan, Chunyi Cui, Jiuye Zhao, Fang Liu, and Gang Li. 2023. "Ontology Framework for Sustainability Evaluation of Cement–Steel-Slag-Stabilized Soft Soil Based on Life Cycle Assessment Approach" Journal of Marine Science and Engineering 11, no. 7: 1418. https://doi.org/10.3390/jmse11071418
APA StyleYu, C., Yuan, J., Cui, C., Zhao, J., Liu, F., & Li, G. (2023). Ontology Framework for Sustainability Evaluation of Cement–Steel-Slag-Stabilized Soft Soil Based on Life Cycle Assessment Approach. Journal of Marine Science and Engineering, 11(7), 1418. https://doi.org/10.3390/jmse11071418