Properties and Model of a Lacustrine Shale Oil Reservoir: A Case Study of the Upper Fourth Member and Lower Third Member of the Shahejie Formation in Dongying Sag and Zhanhua Sag, Jiyang Depression
Abstract
:1. Introduction
2. Overview of Study Area
3. Materials and Methods
4. Results
4.1. Source–Reservoir–Caprock Characteristics of Shale Oil Reservoir
4.1.1. Oil-Generation Potential
4.1.2. Reservoir Properties
4.1.3. Sealing Capacity
4.2. Reservoir Space Structure
4.3. Occurrence of Shale Oil
5. Discussion
5.1. Migration Resistance and Dynamics of Shale Oil
5.2. Migration Patterns of Shale oil
5.3. Accumulation Model of Shale Oil
5.4. Reservoir Model of Shale Oil
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Q.; Zhu, G. Progress in research of deposition of oil source rocks in saline lakes and their hydrocarbon generation. Geol. J. China Univ. 2006, 12, 483–492. [Google Scholar] [CrossRef]
- Shi, J.; Jin, Z.; Liu, Q.; Huang, Z. Depositional process and astronomical forcing model of lacustrine fine-grained sedimentary rocks: A case study of the early Paleogene in the Dongying Sag, Bohai Bay Basin. Mar. Pet. Geol. 2020, 113, 103995. [Google Scholar] [CrossRef]
- Zou, C.; Tao, S.; Hou, L. Unconventional Petroleum Geology; Geological Publishing House: Beijing, China, 2011; pp. 1–374. [Google Scholar]
- Zou, C.; Zhu, R.; Bai, B.; Yang, Z.; Hou, L.; Zha, M.; Fu, J.; Shao, Y.; Liu, K.; Cao, H.; et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil. Bull. Mineral. Petrol. Geochem. 2015, 34, 3–17. [Google Scholar] [CrossRef]
- Montgomery, S.L.; Jarvie, D.M.; Bowker, K.A.; Pollastro, R.M. Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential. AAPG Bull. 2005, 89, 155–175. [Google Scholar] [CrossRef]
- Liu, H.; Yu, B.; Xie, Z.; Han, S.; Shen, Z.; Bai, C. Characteristics and implications of micro-lithofacies in lacustrine-basin organic-rich shale: A case study of Jiyang Depression, Bohai Bay Basin. Acta Pet. Sin. 2018, 39, 1328–1343. [Google Scholar] [CrossRef]
- Zhao, X.Z.; Zhou, L.H.; Pu, X.G.; Jin, F.M.; Han, W.Z.; Xiao, D.Q.; Chen, S.Y.; Shi, Z.N.; Zhang, W.; Yang, F. Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: A case study from the Paleogene 1st Sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China. Pet. Explor. Dev. 2018, 45, 3–14. [Google Scholar] [CrossRef]
- Zhou, L.; Pu, X.; Xiao, D.; Li, H.; Guan, Q.; Lin, L.; Qu, N. Geological conditions for shale oil formation and the main controlling factors for the enrichment of the 2nd Member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin. Nat. Gas Geosci. 2018, 29, 1323–1332. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Y.; Zhang, X.; Liu, H.; Xue, X.; Luo, X. Generation conditions of continental shale gas in Biyang sag, Nanxiang Basin. Pet. Geol. Exp. 2011, 33, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shi, Y.; Zhang, X.; Chen, X.; Yan, Y.; Zhu, J.; Lu, S.; Wang, M. Control factors of enrichment and producibility of shale oil: A case study of Biyang Depression. Earth Sci. 2014, 39, 848–857. [Google Scholar] [CrossRef]
- Liu, B.; Lv, Y.; Ran, Q.; Dai, C.; Li, M.; Wang, M. Geological conditions and exploration potential of shale oil in Qingshankou Formation, northern Songliao Basin. Oil Gas Geol. 2014, 35, 280–285. [Google Scholar]
- Huang, W.; Deng, S.; Lu, S.; Yu, L.; Hu, S.; Zhang, J. Shale organic heterogeneity evaluation method and its application to shale oil resource evaluation—A case study from Qingshankou Formation, southern Songliao Basin. Oil Gas Geol. 2014, 35, 704–711. [Google Scholar] [CrossRef]
- Liu, B.; Lv, Y.; Zhao, R.; Tu, X.; Guo, X.; Shen, Y. Formation overpressure and shale oil enrichment in the shale system of Lucaogou Formation, Malang Sag, Santanghu Basin, nw China. Pet. Explor. Dev. 2012, 39, 744–750. [Google Scholar] [CrossRef]
- Liu, B.; Chi, Y.; Huang, Z.; Luo, Q.; Wu, H.; Chen, X.; Shen, Y. Migration mechanism of the Permian hydrocarbon and shale oil accumulation in Malang Sag, the Santanghu Basin. Oil Gas Geol. 2013, 34, 725–730. [Google Scholar] [CrossRef]
- Liu, B.; Lv, Y.; Meng, Y.; Li, X.; Guo, X.; Ma, Q.; Zhao, W. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, nw China. Pet. Explor. Dev. 2015, 42, 656–666. [Google Scholar] [CrossRef]
- Qiu, Z.; Shi, Z.; Dong, D.; Lu, B.; Zhang, C.; Zhou, J.; Wang, H.; Xiong, B.; Pang, Z.; Guo, H. Geological characteristics of source rock and reservoir of tight oil and its accumulation mechanism: A case study of Permian Lucaogou Formation in Jimusar Sag, Junggar Basin. Pet. Explor. Dev. 2016, 43, 1013–1024. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, L.; Guo, X.; Chang, Q.S.; Wang, X. Characteristics and occurrence of lacustrine dolomitic tight-oil reservoir in the middle Permian Lucaogou Formation, Jimusaer Sag, southeastern Junggar Basin. Acta Petrol. Sin. 2017, 33, 1159–1170. [Google Scholar]
- Li, S.; Pang, X.; Li, M.; Jin, Z. Geochemistry of petroleum systems in the Niuzhuang south slope of Bohai Bay Basin—Part 1: Source rock characterization. Org. Geochem. 2003, 34, 389–412. [Google Scholar] [CrossRef]
- Lewan, M.D.; Roy, S. Role of water in hydrocarbon generation from type-I kerogen in mahogany oil shale of the Green River Formation. Org. Geochem. 2011, 42, 31–41. [Google Scholar] [CrossRef]
- Wang, M.; Lu, S.; Xue, H. Kinetic simulation of hydrocarbon generation from lacustrine type I kerogen from the Songliao Basin: Model comparison and geological application. Mar. Pet. Geol. 2011, 28, 1714–1726. [Google Scholar]
- Burton, D.; Woolf, K.; Sullivan, B. Lacustrine depositional environments in the Green River Formation, Uinta Basin: Expression in outcrop and wireline logs lacustrine depositional environments, Uinta Basin. AAPG Bull. 2014, 98, 1699–1715. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Javadpour, F.; Moravvej Farshi, M.; Amrein, M. Atomic-force microscopy: A new tool for gas-shale characterization. J. Can. Pet. Technol. 2012, 51, 236–243. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, J.; Wang, L.; Wang, J.; Jiang, Z.; Song, Y.; Wang, C.; Wang, Y.; Jin, C. Characterization of typical 3D pore networks of Jiulaodong formation shale using nano-transmission X-ray microscopy. Fuel 2016, 170, 84–91. [Google Scholar] [CrossRef]
- Liu, S.; Sang, S.; Wang, G.; Ma, J.; Wang, X.; Wang, W.; Du, Y.; Wang, T. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism. J. Pet. Sci. Eng. 2017, 148, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Desbois, G.; Urai, J.L.; Kukla, P.A.; Konstanty, J.; Baerle, C. High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: A new approach to investigate microstructures from mm-to nm-scale combining argon beam cross-sectioning and SEM imaging. J. Pet. Sci. Eng. 2011, 78, 243–257. [Google Scholar] [CrossRef]
- Golab, A.; Ward, C.R.; Permana, A.; Lennox, P.; Botha, P. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography, with special reference to modes of mineral occurrence. Int. J. Coal Geol. 2013, 113, 97–108. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Jiang, S.; Li, Z. Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Mar. Pet. Geol. 2016, 78, 99–109. [Google Scholar] [CrossRef]
- Takbiri-Borujeni, A.; Fathi, E.; Kazemi, M.; Belyadi, F. An integrated multiscale model for gas storage and transport in shale reservoirs. Fuel 2019, 237, 1228–1243. [Google Scholar] [CrossRef]
- Hu, Q.; Ewing, R.P.; Rowe, H.D. Low nanopore connectivity limits gas production in Barnett Formation. J. Geophys. Res. Solid Earth 2015, 120, 8073–8087. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Javadpour, F. Upscaling pore pressure-dependent gas permeability in shales. J. Geophys. Res. Solid Earth 2017, 122, 2541–2552. [Google Scholar] [CrossRef]
- Javadpour, F.; Fisher, D.; Unsworth, M. Nanoscale gas flow in shale gas sediments. J. Can. Pet. Technol. 2007, 46, 55–61. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, W.; Ma, Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well. Fuel 2014, 124, 232–240. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Zhao, J.; Liu, C.; Zhang, L. Extended finite element method for analysis of multi-scale flow in fractured shale gas reservoirs. Environ. Earth Sci. 2015, 73, 6035–6045. [Google Scholar] [CrossRef]
- Figueroa Pilz, F.; Dowey, P.J.; Fauchille, A.L.; Courtois, L.; Bay, B.; Ma, L.; Lee, P.D. Synchrotron tomographic quantification of strain and fracture during simulated thermal maturation of an organic-rich shale UK Kimmeridge Clay: Journal of Geophysical Research. Solid Earth 2017, 122, 2553–2564. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, N.R.; Cremer, M.D.; Canales, D.G. The role of argillaceous rock fabric in primary migration of oil. Gulf Coast Assoc. Geol. Soc. Trans. 2002, 52, 1103–1112. [Google Scholar]
- Martin, R.; Baihly, J.; Malpani, R.; Lindsay, G.; Atwood, W.K. Understanding production from Eagle Ford-Austin chalk system. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011. [Google Scholar]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 2—Shale-oil resource systems. In Shale Reservoirs–Giant Resources for the 21st Century; AAPG: Tulsa, OK, USA, 2012; pp. 89–119. [Google Scholar] [CrossRef]
- Gong, X.; Tian, Y.; McVay, D.A.; Ayers, W.B.; Lee, W.J. Assessment of Eagle Ford Shale oil and gas resources. In SPE Unconventional Resources Conference Canada; Society of Petroleum Engineers: Calgary, AB, Canada, 2013. [Google Scholar]
- Ning, F. The main control factors of shale oil enrichment in Jiyang depression. Acta Pet. Sin. 2015, 36, 905–914. [Google Scholar] [CrossRef]
- Shao, L.; Zhang, P.; Hilton, J.; Gayer, R.; Wang, Y.; Zhao, C.; Luo, Z. Paleoenvironments and paleogeography of the Lower and lower Middle Jurassic coal measures in the Turpan-Hami oil-prone coal basin, northwestern China. AAPG Bull. 2003, 87, 335–355. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Li, Z. Insight into water occurrence and pore size distribution by nuclear magnetic resonance in marine shale reservoirs, southern China. Energy Fuels 2023, 37, 319–327. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, Z. Relationship between hydrocarbon reservoir and genetic types of sequence boundary in rift lacustrine basin. J. China Univ. Pet. 2004, 28, 1–6. [Google Scholar]
- Yang, W.; Jiang, Y.; Wang, Y. Study on shale facies sedimentary environment of lower Es3-upper Es4 in Dongying sag. J. China Univ. Pet. 2015, 39, 19–26. [Google Scholar] [CrossRef]
- Ma, C.; Dong, C.; Luan, G.; Lin, C.; Liu, X.; Elsworth, D. Type, characteristics and effect of natural fluid pressure fractures in shale: A case study of the Paleogene strata in Eastern China. Pet. Explor. Dev. 2016, 44, 580–589. [Google Scholar] [CrossRef]
- Chu, W. Research on the development of shale oil and the fluctuation of international crude oil price. In Proceedings of the 2nd International Conference on Shale Oil Resources and Development Technologies, Beijing, China, 28 April 2019. [Google Scholar]
- Li, D.; Liu, Z.; Zhang, G.; Zheng, Z.; Jia, J.; Gao, Y.; Zan, X. Comparison and revelation of tight oil accumulation conditions, distribution characteristics and development status between China and U.S. Nat. Gas Geosci. 2017, 28, 1126–1138. [Google Scholar]
- Birdwell, J.E.; Vanden Berg, M.D.; Johnson, R.C.; Mercier, T.J.; Boehlke, A.; Brownfield, M.E. Geological, geochemical and reservoir characterization of the Uteland Butte member of the Green River Formation, Uinta Basin, Utah. In Hydrocarbon Source Rocks in Unconventional Plays, Rocky Mountain Region; Dolan, M.P., Higley, D.K., Lillis, P.G., Eds.; Rocky Mountain Association of Geologists: Denver, CO, USA, 2016; Chapter 12; pp. 352–378. [Google Scholar]
- Li, M.Y.; Zhu, R.K.; Hu, S.Y. Geological characteristics and resource potential of overseas terrestrial shale oil. Lithol. Reserv. 2022, 34, 163–174. [Google Scholar] [CrossRef]
- Meng, M.; Peng, J.; Ge, H.; Ji, W.; Li, X.; Wang, Q. Rock fabric of lacustrine shale and its influence on residual oil distribution in the Upper Cretaceous Qingshankou Formation, Songliao Basin. Energy Fuels 2023, 37, 7151–7160. [Google Scholar] [CrossRef]
- Gall, R.D.; Birdwell, J.E.; Brinkerhoff, R.; Vanden Berg, M.D. Geologic characterization and depositional history of the Uteland Butte Member, Green River Formation, southwestern Uinta Basin, Utah in The lacustrine Green River Formation: Hydrocarbon potential and Eocene climate record. Utah Geol. Assoc. 2022, 50, 37–62. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, S.; Xiao, J. The excellent source rocks and accumulation of stratigraphic and lithologic traps in the Jiyang depression, Bohai bay basin, China. Earth Sci. Front. 2008, 15, 137–146. [Google Scholar]
- Zhu, G.; Jin, Q. Geochemical characteristics of two sets of excellent source rocks in Dongying Depression. Acta Sedimentol. Sinica 2003, 21, 506–512. [Google Scholar] [CrossRef]
- Kirkland, D.W.; Evans, R. Source-rock potential of evaporitic environment. AAPG Bull. 1981, 65, 181–190. [Google Scholar] [CrossRef]
- Katz, B.J.; Bissada, K.K.; Wood, J.W. Factors limiting potential of evaporites ashydrocarbon source rocks. SEG Tech. Program Expand. Abstr. 1987, 6, 923. [Google Scholar] [CrossRef]
- Sun, Z.C.; Yang, F.; Zhang, Z.H.; Li, S.J.; Li, D.M.; Peng, L.C.; Zeng, X.L.; Xu, Y.L.; Mao, S.Z.; Wang, Q. Sedimentary Environment and Oil-Gas Generation of CenozoicSaline Lakes in China; Petroleum Industry Press: Beijing, China, 1997; pp. 1–338. [Google Scholar]
- Jin, Q.; Zhu, G.Y.; Wang, J. Deposition and distribution of high-potential sourcerocks in saline lacustrine environments. J. China Univ. Pet. 2008, 32, 19–23. [Google Scholar]
- Liu, C.Y.; Zhao, J.F.; Ma, Y.P.; Xiong, L.F.; Chen, J.J.; Mao, G.Z.; Zhang, D.D.; Deng, Y. The advances and problems in the study of the characteristics and formation ofhydrocarbon-rich sag. Earth Sci. Front. 2014, 21, 75–88. [Google Scholar]
- Guo, P.; Liu, C.Y.; Gibert, L.; Huang, L.; Zhang, D.W.; Dai, J. How to find high-quality petroleum source rocks in saline lacustrine basins: A case study from the Cenozoic Qaidam Basin, NW China. Mar. Pet. Geol. 2020, 111, 603–623. [Google Scholar] [CrossRef]
- Tang, L.; Song, Y.; Pang, X.P.; Jiang, Z.X.; Guo, Y.C.; Zhang, H.G.; Pan, Z.H.; Jiang, H. Effects of paleo sedimentary environment in saline lacustrine basin on organic matter accumulation and preservation: A case study from the Dongpu Depression, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2020, 185, 106669. [Google Scholar] [CrossRef]
- Ma, C.; Dong, C.; Luan, G.; Lin, C.; Liu, X.; Duan, H.; Liu, S. Characteristics and influencing factors of organic matter pores in paleogene shale, Subei Basin. J. China Univ. Pet. 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Wang, G.; Liu, H.; Xiong, Z.; Wang, J. Control condition of felsic on brittleness of lacustrine shales. J. China Univ. Pet. 2016, 40, 1–8. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, S.; Liu, S.; Zhang, H. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods. Acta Pet. Sin. 2012, 33, 419–427. [Google Scholar] [CrossRef]
- Cardott, B.J.; Landis, C.R.; Curtis, M.E. Post-oil solid bitumen network in the Woodford Shale, USA—A potential primary migration pathway. Int. J. Coal Geol. 2015, 139, 106–113. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, X.; Zhang, L.; Liu, Q. Occurrences of shale gas and their petroleum geological significance. Adv. Earth Sci. 2010, 25, 597–604. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, L.; Li, Y.; Tang, X.; Zhu, L.; Xing, Y.; Jiang, S.; Jing, T.; Yang, S. Classification and evaluation of shale oil. Earth Sci. Front. 2012, 19, 322–331. [Google Scholar]
- Lv, Y.; Zhang, S.; Wang, Y. Research of quantitative relations between sealing ability and thickness of cap rock. Acta Pet. Sin. 2000, 21, 27–30. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Y.; Liu, Q.; Zhang, S.; Zhu, R.; Zhang, L. Effects of hydrocarbon physical properties on caprock’s capillary sealing ability. Sci. China Earth Sci. 2010, 53, 665–671. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W.; Wang, Q. Rock fabric of tight sandstone and its influence on irreducible water saturation in Eastern Ordos Basin. Energy Fuels 2023, 37, 3685–3696. [Google Scholar] [CrossRef]
- Bredehoeft, J.D.; Wesley, J.B.; Fouch, T.D. Simulations of the origin of fluid pressure, fracture generation, and the movement of fluids in the Uinta Basin, Utah. AAPG Bull. 1994, 78, 1729–1747. [Google Scholar] [CrossRef]
- Hao, S.; Liu, G.; Huang, Z.; Gao, Y. Simulation models for primary hydrocarbon migration. Acta Pet. Sin. 1994, 15, 21–31. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, D.; Wang, X. Intermittent fracturing migration of pore fluids-one of the major regime of primary migration of petroleum. Pet. Explor. Dev. 1994, 21, 20–26. [Google Scholar]
- Kobchenko, M.; Panahi, H.; Renard, F.; Dysthe, D.K.; Malthe-Sørenssen, A.; Mazzini, A.; Scheibert, J.; Jamtveit, B.; Meakin, P. 4D imaging of fracturing in organic-rich shales during heating: Journal of Geophysical Research. Solid Earth 2011, 116, 1–9. [Google Scholar] [CrossRef]
- Durand, B. Understanding of HC migration in sedimentary basins (present state of knowledge). Org. Geochem. 1988, 13, 445–459. [Google Scholar] [CrossRef]
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef] [Green Version]
- Javadpour, F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). J. Can. Pet. Technol. 2009, 48, 16–21. [Google Scholar] [CrossRef]
- Sondergeld, C.H.; Newsham, K.E.; Comisky, J.T.; Rice, M.C.; Rai, C.S. Petrophysical considerations in evaluating and producing shale gas resources. In SPE Unconventional Gas Conference; SPE: Pittsburgh, PA, USA, 2010; p. 131768. [Google Scholar]
- Murray, C.D. The physiological principle of minimum work I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 1926, 12, 207–214. [Google Scholar] [CrossRef]
- Deng, H.; Qian, K. Analysis on Sedimentary Geochemistry and Environment; Science Technology Press: Lanzhou, China, 1993; p. 154. [Google Scholar]
- Loucks, R.G.; Reed, R.M. Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrock. Gulf Coast Assoc. Geol. Soc. J. 2014, 3, 51–60. [Google Scholar]
- Shao, L.; Xiao, Z.; Lu, J.; He, Z.; Wang, H.; Zhang, P. Permo-Carboniferous coal measures in the Qinshui Basin: Lithofacies paleogeography and its control on coal accumulation. Front. Earth Sci. China 2007, 1, 106–115. [Google Scholar] [CrossRef]
Contrast Parameter | North America | China | ||||||
---|---|---|---|---|---|---|---|---|
Reservoir properties | Shale set | Wolfcamp (Permian Basin) | Bakken | Eagle Ford | Uteland Butte Member, Lower Green River Formation (Uinta Basin) | Shahejie Formation (Jiyang Depression) | Yanchang Formation (Ordos Basin) | Kongdian Formation (Huanghua Depression) |
Sedimentary environment | marine facies | marine facies | marine facies | lacustrine facies | salinized lacustrine facies | lacustrine facies | lacustrine facies | |
Lithology | carbonate rocks, shale | carbonate rocks, siltstone, shale | carbonate rocks, calcareous shale | clayey limestone, clayey dolostone, calcareous shale | clayey limestone, calcareous shale | fine sandstone, siltstone, shale | siltstone, shale | |
Depth/m | 2500–3100 | 2400–3000 | 1200–3700 | 1000–3000 | 2000–3900 | 1600–2900 | 3200–3600 | |
Thickness/m | 20–150 | 5–12 | 75 | 15–130 | 20–400 | 5–15 | 200–400 | |
Toc/% | 2–9 | 5–10 | 2–12 | 2–5 | 1.2–16 | 2–10 | >2 | |
Ro/% | 0.7–0.9 | 0.5–1.3 | 0.45–1.4 | 0.55–1.10 | 0.5–1.3 | 0.9–1.1 | 0.6–1.1 | |
Porosity/% | 4–12 | 4–10 | 8–12 | 3–20 | 3–16 | 2–12 | 5–10 | |
Permeability/mD | 0.01–1.0 | 0.01–0.1 | 0.01–1.0 | 0.004–0.337 | <0.1 | 0.01–0.2 | 0.12 | |
Fluid properties | Formation pressure coefficient | 1.1–1.2 | 1.2–1.5 | 1.35–1.8 | 1.0–1.8 | 1.1–2.0 | 0.77–0.84 | 0.9–1.2 |
Crude oil density/(g/cm3) | 0.71–0.81 | 0.78–0.83 | 0.77–0.87 | 0.82–0.88 | 0.82–0.92 | 0.80–0.86 | 0.86–0.89 | |
Crude oil viscosity/mPa·s | 149.5–666.6 | 2–10 | 0.01–1 | 1–4 | 4–126 | 5.5–6.4 | 10.4–23.5 | |
Gas-oil ratio (m3/m3) | 50–140 | 50–375 | 90–2100 | - | 8–97 | 95–125 | 68.5–97.5 |
Kerogen Type | Ro/% | TOC/% | S1/(mg/g) | S2/(mg/g) | S1 + S2/(mg/g) | |
---|---|---|---|---|---|---|
I, II1 | minimum | 0.5 | 4.03 | 1.03 | 17.59 | 18.97 |
maximum | 1.0 | 12.8 | 10.0 | 78.59 | 82.65 | |
average | 0.8 | 6.41 | 4.57 | 41.28 | 45.85 |
Origin | Primary Pore | Secondary Pore | ||
---|---|---|---|---|
Location | ||||
Pore | Inorganic-mineral pore | Intercrystalline (intergranular) pore | Intergranular pore of felsic mineral | Intergranular dissolved pore of felsic mineral |
Intercrystalline pore of carbonate mineral | Intercrystalline (dissolved) pore of carbonate mineral | |||
Intercrystalline pore of pyrite | Intercrystalline (dissolved) pore of pyrite | |||
Intracrystalline (intragranular) pore | Intracrystalline pore of clay mineral | Intracrystalline (dissolved) pore of clay mineral | ||
Intracrystalline pore of carbonate mineral | Intracrystalline (dissolved) pore of carbonate mineral | |||
Intragranular pore of felsic mineral | Intragranular dissolved pore of felsic mineral | |||
Organic pore | Internal pore in organic matter | |||
Marginal pore in organic matter | ||||
Boundary pore in organic matter | ||||
Fracture | Structural fracture | |||
Bedding fracture | ||||
Shrinkage fracture | ||||
Dissolved fracture | ||||
Natural fluid pressure fracture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Fang, X.; Ma, X.; Liu, X.; Xu, B.; Ge, X. Properties and Model of a Lacustrine Shale Oil Reservoir: A Case Study of the Upper Fourth Member and Lower Third Member of the Shahejie Formation in Dongying Sag and Zhanhua Sag, Jiyang Depression. J. Mar. Sci. Eng. 2023, 11, 1441. https://doi.org/10.3390/jmse11071441
Ma C, Fang X, Ma X, Liu X, Xu B, Ge X. Properties and Model of a Lacustrine Shale Oil Reservoir: A Case Study of the Upper Fourth Member and Lower Third Member of the Shahejie Formation in Dongying Sag and Zhanhua Sag, Jiyang Depression. Journal of Marine Science and Engineering. 2023; 11(7):1441. https://doi.org/10.3390/jmse11071441
Chicago/Turabian StyleMa, Cunfei, Xianxu Fang, Xiaonan Ma, Xiantai Liu, Bingkun Xu, and Xinmin Ge. 2023. "Properties and Model of a Lacustrine Shale Oil Reservoir: A Case Study of the Upper Fourth Member and Lower Third Member of the Shahejie Formation in Dongying Sag and Zhanhua Sag, Jiyang Depression" Journal of Marine Science and Engineering 11, no. 7: 1441. https://doi.org/10.3390/jmse11071441
APA StyleMa, C., Fang, X., Ma, X., Liu, X., Xu, B., & Ge, X. (2023). Properties and Model of a Lacustrine Shale Oil Reservoir: A Case Study of the Upper Fourth Member and Lower Third Member of the Shahejie Formation in Dongying Sag and Zhanhua Sag, Jiyang Depression. Journal of Marine Science and Engineering, 11(7), 1441. https://doi.org/10.3390/jmse11071441