1. Introduction
The jettyless floating transfer system is a novel offshore liquefied natural gas (LNG)-transfer concept that entails ship-to-shore or ship-to-ship transfers. This innovative approach eliminates the need for quays or piers and instead utilizes floating flexible pipelines, a floating transfer platform, and a reel to connect the terminal to a floating carrier for offloading. Several companies, including Econnect Energy in Norway, Stena Power & LNG Solutions in Norway, and Houlder LNG Technology & Solutions in England, have already adopted this conceptual design scheme. Various systems, such as the jettyless transfer system [
1], the autonomous transfer system [
2], and the floating transfer terminal [
3], have been developed to accomplish LNG transfer without a traditional jetty.
One noteworthy aspect of this system is the employment of a small floating-platform berth on a large floating ship. In order to guarantee the safe transmission of LNG, it is crucial to identify the hydrodynamic-response characteristics of the floating transfer platform when it docks with a large floating ship in the design of a jettyless floating transfer system. Obtaining the hydrodynamic-response characteristics of the floating transfer platform requires the analysis of the hydrodynamic coupling of multiple floating bodies.
The analysis of the hydrodynamic coupling of multiple floating bodies has been extensively explored by researchers, with existing studies primarily focusing on two aspects. The first pertains to large structures, such as very large floating bodies [
4]. and “Pelamis” wave-energy devices [
5], which entail multiple small floating bodies interconnected by constraints, with sufficient spacing between each of them. In this case, the small floating bodies are typically simple structures, like cylinders or boxes. The second aspect involves narrow gaps between slender structures, such as two vessels alongside each other.
When examining the hydrodynamic analysis of simple structures, like cylinders or boxes, Goo and Yoshida [
6] developed a numerical approach using a three-dimensional source-distribution method and the interaction-linear-potential theory to forecast the wave-exciting forces and motions of two freely floating bodies in shallow water. In another study, Kagemoto and Yue [
7] employed an exact algebraic method to investigate three-dimensional diffraction and radiation by several separate non-overlapping cylinders, using the linear-potential flow theory. Although this method can effectively solve the complete problem by predicting wave-exciting forces, hydrodynamic coefficients, and second-order-drift forces, it is exclusively based on the diffraction characteristics of a single cylinder. Subsequently, Kagemoto and Yue [
8] utilized this method for very large floating structures with multiple legs by employing a matching concept that divided the entire structure into an interior core and a relatively small number of legs near the outer boundary. They solved the inverse-hydrodynamic-interaction problem and obtained optimal leg arrangements for minimal wave forces, displacements, and more. Siddorn and Eatock Taylor [
9] also developed an exact algebraic method based on the boundary conditions satisfied by the sum of several Fourier–Bessel series for the combined radiation-and-diffraction problem. This method was applied to a square array of truncated cylinders, and it yielded the hydrodynamic coefficients of each cylinder, free surface elevations, and the excitation forces on each cylinder. In a 3D-time-domain approach by Zhu et al. [
10], the influence of the gap on the wave forces in multiple floating structures was explored. The results showed that a sharp peak-force response appeared on each floating body for certain resonant wave numbers, and non-dimensional in-line wave forces were present on both the leading and the shielded floating bodies. The study revealed that the in-line wave force on the leading floating body was greater than that on the shielded floating body, and the shielding effect of the leading floating body became important. Huang et al. [
11] analyzed the dynamic response of a floating bridge under the two conditions of “with a floating platform” and “without a floating platform.” The results showed that the floating platform served as a wave shield, reducing the motions in the heave, surge, and pitch of the floating bridge. Although the shielding effects of the platform decreased the longitudinal force of the connectors to some extent, the vertical force on these connectors was minimally impacted.
In Li’s study [
12], the hydrodynamic interaction between two vessels was explored, focusing on the resonant characteristics in parallel and nonparallel configurations for a real hull-shaped FPSO and a ship, with different wave headings analyzed using Cummins’ approach in the time domain. Numerical and experimental evaluations of the shielding effect were conducted by switching vessels on the lee and weather sides. The results indicated that distinct degrees of freedom tended to react to resonant modes, with the higher-resonance mode shifting to a lower frequency in nonparallel configurations. The shielding effect only suppressed the motion caused by the gap resonance, while the natural-frequency-resonance-like roll remained unaffected. The influence of the weather-side exchange between the ship and the FPSO regarding the hydrodynamic interaction for the FPSO was negligible, due to significant differences in size and volume between the two ships. Sun et.al. [
13] studied the wave-induced responses of constrained multiple bodies by applying the linear-diffraction theory and imposing constraints on the body connections using the Lagrange multiplier technique. Two cases involving two rectangular boxes connected by a hinge or rigid rod were investigated, and a tanker was considered alongside an FLNG barge. The study found that the Lagrange multiplier technique was convenient for analyzing multiple rigid bodies connected by rigid or flexible connections, and that the behaviors of the vessels with rigid or hinged horizontal connections were generally similar. Feng and Bai [
14] applied a nonlinear decomposition model with the potential-flow theory to investigate the hydrodynamic performances of two freely floating or interconnected barges. The results indicated that in the case of the hinge connection, potentially large constraint moments were relieved. In the symmetric configuration in a head sea, the yaw drift was reduced in the case of a middle-hinge connection compared to two freely floating barges. In a beam sea, the hinge connections aided in diminishing the discrepancy in motion between the windward and lee-side barges, suppressing the motion of the windward barge while enlarging that of the lee-side barge. Li [
15] investigated the hydrodynamic coupling of a semi-submersible floating wind turbine and an offshore support vessel during walk-to-work operations, using 3D diffraction and radiation computation in the frequency domain. Ignoring the hydrodynamic interaction led to over-prediction of motion of the support vessel in surge and sway due to the overestimation of the drift force. The sway and roll of the wind turbine decreased significantly, up to 40%, due to a shielding effect, which cut down both the linear and the nonlinear wave forces in the entire frequency range. The sway and heave of the support vessel displayed gap-resonance behavior, where different modes of peak or trough were observed, whose occurrence was opposite to sway and heave. A higher-order boundary-element method (HOBEM) combined with a generalized mode approach was applied to the analysis of the motion and drift force of multiple side-by-side-moored vessels with small gaps by Hong et al. [
16]. The numerical results were used to predict the total wave-drift force, even in the Helmholtz resonance frequency, and the wave-drift force was not significantly influenced by the roll-resonance phenomena captured in the measured relative wave at mid-ship of the LNG FPSO, with LNGCs moored alongside each other. The strength of the interaction decreased as the heading angle changed from the beam sea to the head sea. Kim [
17] conducted a comparative study using numerical calculations of and experiments on the effects of hydrodynamic interactions in multi-body systems, using the LNG FPSO and a shuttle tanker. Both side-by-side and tandem mooring were considered. In the tandem mooring, the shielding effect was noticeable in the drift force, while the distance had no significant effect on the longitudinal force. In the side-by-side mooring, the lee-side vessel’s shielding effect on the drift force and motion RAO was significant, with the lee-side ship acting as a block to disturb the wave-flow pattern laterally. The closer the distance between the vessels, the greater the reciprocally amplified magnitude of the lateral drift. Kuriakose [
18] compared the hydrodynamic performance of a single body and multiple bodies near each other. They found significant hydrodynamic interactions, resulting in forces and responses which were up to double those of the single-body case. Additionally, there was a shielding effect on the responses on the leeward-side body. Wolgamot et al. [
19] considered waves radiated from circular arrays of truncated cylinders oscillating independently in still water. Body motions that excited the same free-surface motion local to the array as the sloshing near-trapped mode were associated with enhanced radiation from the array. The authors suggested that rigid body-pumping modes might be relevant to structures like tension-leg platforms or semi-submersible platforms, with arrays of cylinders forced to move together.
A jettyless floating transfer system involves two floating bodies: an LNG carrier, and a small floating transfer platform for transmission operations. These two bodies have significant size differences. Fæhn [
20] presented a universal buoyancy system for LNG offloading for small-scale ships and applied SIMA software to investigate the behaviors of the platform alone, the platform connected to the ship side, and the complete system with a pipeline, ship, and platform. The results indicated that the complete system had the largest recordings for all the wave headings, and the pipeline added a net excitation to the system. However, the analysis of the hydrodynamic coupling of the platform and the ship was incomplete, and the impact of the ship’s shielding effect on the platform’s motion and forces was unknown.
This paper reports the use of a direct time-domain high-order boundary-element method [
21,
22] using the linear-potential-flow theory to study the hydrodynamic coupling problem of a small semi-submersible platform and a large floating box. One integral equation and two equations of motion are solved without considering the connection between the two floating bodies. The aim is to investigate the shielding effect of the large floating box on the motion responses of the small platform, both when the large floating box is fixed and when it is freely floating under wave action. In particular, the relative motion amplitudes between the platform and the large box are shown, providing important design references for a jettyless floating transfer system due to the presence of airborne spanning pipes between the platform and the hull.
4. Coupled Analysis of a Small Platform and a Large Floating Body
The jettyless floating transfer system involves two floating bodies, an LNG carrier, and a small floating transfer platform, for transmission operations. These bodies are equivalent to a large floating box and a small semi-submersible platform, respectively. In this section, the aim is to perform a hydrodynamic coupling analysis of the two bodies to investigate the issues in a jettyless floating transfer system, such as the shielding effect of the large floating box and hydrodynamic coupling effect.
4.1. Parameters of the Small Platform and the Large Floating Box
The parameters of the small semi-submersible platform and the large floating box are shown in
Table 2. The ratio of the length of the semi-submersible platform to the large floating box was 1:6, the ratio of the width was 0.75:1, and the ratio of the draught was 0.77:1. The distance between the semi-submersible platform and the large floating box was 2.0 m. The layout plans of the two floating bodies are shown in
Figure 4 and a plane dimensional drawing of the semi-submersible platform is shown in
Figure 5.
The linear regular incident wave is adopted
where
AI is the amplitude of the incident wave,
kI is the wave number of the incident wave,
T is the period of the incident wave,
is the wave-incidence angle, (
x,
y) are the coordinates of any point on the water surface, and
is the initial phase,
.
The diagonal element of the damping matrix of the small semi-submersible platform can be written as
where
is the resonance frequency in the
i-direction,
is the mass or moment-of-inertia mass in the i-direction, and
is the damping ratio.
The values of for the large floating box are , , , and , respectively.
The damping matrix of the small semi-submersible platform
B1 is
The stiffness matrix of the small semi-submersible platform
K1 is
The still-water-restoring-force matrix of the small semi-submersible platform
C1 is
4.2. Meshing
To mesh the wet surface of the small semi-submersible platform and the large floating body (LFB), as well as the free-water surface, eight-node quadrilateral elements were used. The mesh-generation process for the floating bodies and the free-water surface is shown in
Figure 6 and
Figure 7, respectively. The total number of the mesh elements in the semi-submersible platform was 2266, and for the large floating box, it was 996. The number of mesh elements for the free-water surface was 5856.
As a result of the substantial size discrepancy between the two floating bodies, the meshing surrounding the small semi-submersible platform was relatively fine, while the meshing surrounding the large floating box was relatively rough; however, all the meshes provided the required calculation accuracy.
4.3. Consideration of the Motion Response of the Semi-Submersible Platform Only
The large floating body was fixed, considering only the impact of its diffraction wave on the motion response of the small platform. The motion responses of the small platform for when the wave-incidence angles were 0°, 45°, 90°, and 135° (the definition of the incidence angle can be seen in
Figure 4), and the wave period ranged from 3.5 s to 11.0 s, considering the wave conditions of China’s seas [
27], are shown in
Figure 8,
Figure 9 and
Figure 10.
- (1)
The wave-incidence angle
In
Figure 8, the motion responses of the small platform are depicted as the wave period varied at the wave-incidence angle
. The fixed large floating box was positioned in the head wave, while the small platform was located on the back wave side. The results indicate that the motion amplitudes in the
x-axis direction and
y-axis rotation were significantly lower than the results of the single platform without the floating box. However, the motion amplitudes around the
y-axis direction were greater, as the wave periods ranged from 9.0 s to 11.0 s. Additionally, the motion amplitudes in the
z-axis direction were slightly smaller than the results of the single platform without the floating box when the wave periods ranged from 3.5 s to 7.5 s and from 9.5 s to 11.0 s. These outcomes indicate the significant shielding effect of the large floating box on the small semi-submersible platform in the
x-axis direction and around the
y-axis direction when compared with the results of the independent platform under wave action. However, the shielding effect of the large floating box in the
z-axis direction was weak.
- (2)
The wave-incidence angle
The motion responses of the small platform at the wave incidence angle
are shown in
Figure 9. The wave propagated longitudinally along the y-axis direction of the platform and the floating box. The small platform’s motion amplitudes with the fixed floating box in the
y-axis direction,
z-axis direction, and around the
y-axis direction demonstrate a close match with the results of the single platform without the floating box. This implies that the presence of the fixed floating box had minimal effects on the hydrodynamic characteristics of the small platform, specifically in relation to the longitudinal propagation of the waves.
- (3)
The wave-incidence angle and
Figure 10 illustrates the motion responses of the small platform at the wave-incidence angles of
and
. The fixed floating box was positioned in the head wave, while the small platform was situated on the back wave side when the wave-incidence angle was
. From the figures, it is evident that the motion amplitudes in the
x-axis direction, in the
y-axis direction, around the
x-axis direction, and in the
y-axis direction were notably lower than the results obtained from the single platform without the floating box under the same wave-incidence angle
(
Figure 10a,b,d,e). Meanwhile, the motion amplitudes in the
z-axis direction were slightly reduced compared to the results from the single platform without the floating box, particularly for the wave periods from 3.5 s to 7.0 s and from 10.0 s to 11.0 s in
Figure 10c.
The motion amplitudes in the
x-axis direction, in the
y-axis direction, around the
x-axis direction, and in the
y-axis direction were significantly greater than the results obtained from the single platform without the floating box under the wave-incidence angle
in
Figure 10a,b,d,e. This outcome was due to the fact that the small platform was positioned in a head wave, which caused the fixed floating box to reflect the incident wave, leading to an increase in the wave height on the small-platform side.
It is noteworthy that the presence of the fixed floating box effectively reduced the motion amplitude in the x-axis direction, irrespective of the wave-incidence directions, except for when the wave periods ranged from 3.5 s to 5.0 s and the wave-incidence angle was . These findings suggest that the shielding effect of the fixed floating box on the small platform was significant when the former was in the head wave and the latter was situated on the back wave side, leading to smaller motion amplitudes in the small platform.
4.4. Coupled Analysis of Hydrodynamic Responses of Two Floating Bodies
The objective of this section is to investigate the hydrodynamic coupling responses between the small semi-submersible platform and the large floating box, which were constrained by the linear stiffness matrix. In particular, it takes into account the impact of the diffraction and radiation waves generated by the large floating box on the motion responses of the small platform while disregarding the connection between the two floating bodies.
The damping values of the large floating box were obtained based on the maximum value of the radiation damping of the floating box. These parameter settings were not based on an actual model and were only applied in the calculation of examples. The damping changes to the floating box may have exerted a significant impact on the motion responses of the floating box itself and of the semi-submersible platform.
Therefore, the damping matrix of the large floating box
B2 is
The stiffness matrix of the large floating box
K2 is
The still-water-restoring-force matrix of the large floating box
C2 is
4.4.1. Wave-Incidence Angle
- (1)
Motion responses of the small semi-submersible platform
Figure 11 presents the motion amplitudes of the semi-submersible platform berthed alongside the large free-floating box, which are subsequently compared to the motion responses of the same single small platform under wave action and to the motion responses of the same small semi-submersible platform docked at the same large fixed floating box under wave action.
The results reveal a few variations between the surge motions of the small platform docked at the large fixed floating box and the outcomes of the small platform docked at the free large floating box in
Figure 9a. Nevertheless, a significant difference was observed between the surge motions of the small platform docked at the free large floating box and the motion responses of the single small platform under wave action. This difference indicates that the large floating box had significant shielding effects on the surge motion of the small platform when it berthed at the large floating box with a wave-incidence angle of
.
It can be seen that the heave motion of the small platform docked at the free large floating box was weaker than that of the small platform docked at the fixed large floating box when the wave period was between 5.0 s and 8.0 s. However, the heave motion of the small platform docked at the free large floating box was stronger than that of the small platform berthed at the fixed large floating box and the motion responses of the single small platform under wave action when the wave period was greater than 8.0 s. These findings suggest that when the large floating box was present and the wave period ranged from 5.0 s to 8.0 s, the heave-motion amplitudes of the small platform decreased. However, when the large floating box was present, and the wave period was greater than 8.0 s, the large floating box did not have a shielding effect; instead, it caused greater heaving-motion responses from the small platform.
The pitch motion of the small platform docked at the free large floating box presented a similar pattern to the heave motion observed in
Figure 11c. The pitch motion of the small platform docked at the free large floating box was slightly stronger than that of the small platform docked at the fixed large floating box and substantially weaker than the motion responses of the single small platform under wave action when the wave period ranged from 3.5 s to 7.0 s. However, when the large floating box was present, and the wave period was greater than 9.0 s, the large floating box did not have a shielding effect; instead, it caused greater pitch-motion amplitudes in the small platform.
When the wave period was greater than 7.5 s, the large box had little shielding effect on the vertical motion of the small platform. Instead, the large box amplified the vertical-motion amplitudes of the platform due to an increase in the interactions between the large box and the waves.
- (2)
Motion responses of the large floating box
Figure 12 displays the motion responses of the large floating box coupled with the semi-submersible platform, which are then compared with the motion responses of the single large floating box under the wave. The results show that the motion responses of the large floating box with the semi-submersible platform agreed well with the outcomes of the single large floating box under the wave. This finding suggests that the small platform had minimal impact on the motion responses of the large floating box when the small semi-submersible platform docked at the large floating box with a wave-incidence angle of
.
- (3)
Relative motion between the small platform and large floating box
The relative-motion amplitudes between the small platform and the large floating box are shown in
Figure 13. The
(
i = 1, 2, 3,…, 6) represents the relative motions in six freedom degrees.
The results demonstrate that when the wave period was below 7.5 s, the relative surge-motion amplitudes between the small platform and the free large floating box exceeded the amplitudes between the small platform and the large fixed floating box. However, when the wave period was greater than 9.5 s, the relative surge-motion amplitudes between the small platform and the free large floating box fell below the amplitudes between the small platform and the large fixed floating box. This indicates that the large fixed floating box provided a better shielding effect than the free large floating box.
Moreover,
Figure 13b illustrates that the relative heave-motion amplitudes between the small platform and the free large floating box were higher than the amplitudes between the small platform and the large fixed floating box, primarily as the wave period increased. This means that the large fixed floating box exhibited a better shielding effect than the free large floating box.
When the wave period fell below 7.5 s, the relative pitch-motion amplitudes between the small platform and the free large floating box surpassed the relative motion amplitudes between the small platform and the large fixed floating box in
Figure 13c. Conversely, when the wave period exceeded 7.5 s, the comparison reverses = d, indicating that the shielding effect of the free large floating box improved with the increase in the wave period for the pitch motion.
4.4.2. Wave-Incidence Angle
- (1)
Motion responses of the small semi-submersible platform
Figure 14 shows the motion amplitudes of the semi-submersible platform docked at the free large floating box and compares them to the motion responses of the same single small platform under wave action and of the same small semi-submersible platform docked at the large fixed floating box under wave action. It shows that the motion responses of the small platform berthed at the large fixed floating box corresponded well with the outcomes of the small platform docked at the free large floating box, as shown in
Figure 14.
However, slight variations occurred between the surge motions of the small platform docked at the free large floating box and the motion responses of the single small platform under wave action. This suggests that the large floating box did not have a significant shielding effect on the motion responses of the small platform when the small platform docked at the large floating box with a wave-incidence angle of .
- (2)
Motion responses of the large floating box
Figure 15 shows the motion responses of the large floating box with the semi-submersible platform and compares them to the motion responses of the single large floating box under wave action. The results indicate that the motion responses of the large floating box with the semi-submersible platform agreed well with the outcomes of the single large floating box under the wave.
This finding suggests that the small platform had little impact on the motion responses of the large floating box when the small semi-submersible platform docked at the large floating box with the wave-incidence angle of .
4.5. Analysis of Wave Force of the Semi-Submersible Platform
To analyze the relationship between the wave period and the motion responses of the semi-submersible platform, the distribution characteristics of the wave force when the wave period changed were investigated.
Figure 16 shows the wave forces of the semi-submersible platform during different periods when the semi-submersible platform berthed alongside the fixed floating box and the wave angle was 0, and compares them with the values for the single semi-submersible platform and the semi-submersible platform berthed alongside the free-floating box.
It can be seen that as the wave period increased, the trend in the wave force variation was consistent with the motion response. This might explain the characteristics of the motion responses in some specific periods. For example, when the wave period was 4.5 s, the wave force or moment in different directions was very small, and the motion responses of the platform were also very small. When the wave period was greater than 7.5 s, the motion responses of the platform berthed alongside the floating box in the z-direction were greater than those of the single platform because the variation characteristics of their wave forces were same.
The presence of the floating box on the windward side caused significant changes in the wave forces and moments acting on the semi-submersible platform, which, in turn, led to similar changes in the motions of the platform. Other factors, such as the ratio of the length of the floating box to its width, the connection type, and the spacing between the box and the platform, will be further studied to investigate the essential changes in the motion responses of semi-submersible platforms.