A Precise Semantic Segmentation Model for Seabed Sediment Detection Using YOLO-C
Abstract
:1. Introduction
- A model YOLO-C is proposed to detect objects and segment images at the same time based on U-Net and YOLOX, which produces higher accurate detection and segmentation results;
- The proposed YOLO-C can produce more details of the seabed sediment, including accurate shape and area;
- YOLO-C has high time efficiency than usual neural network methods.
2. Related Work
2.1. About Seabed Sediment
2.2. About Object Detection
2.3. About Semantic Segmentation
3. Proposed Model
3.1. Backbone Network of YOLO-C
3.2. Feature Fusion of YOLO-C
3.3. Detect Head of YOLO-C
3.4. Segment Head of YOLO-C
4. Experimental Results and Analysis
4.1. Experimental Dataset
4.1.1. TWS Seabed Dataset
4.1.2. xBD Dataset
4.2. Experimental Setup
4.3. Evaluation Metrics
4.4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tęgowski, J. Acoustical classification of the bottom sediments in the southern Baltic Sea. Quat. Int. 2005, 130, 153–161. [Google Scholar] [CrossRef]
- Lamarche, L.G. Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand. Cont. Shelf Res. 2011, 31, 1236–1247. [Google Scholar]
- Lucieer, V.; Lucieer, A. Fuzzy clustering for seafloor classification. Mar. Geol. 2009, 264, 230–241. [Google Scholar] [CrossRef]
- Lark, R.M.; Dove, D.; Green, S.L.; Richardson, A.E.; Stewart, H.; Stevenson, A. Spatial prediction of seabed sediment texture classes by cokriging from a legacy database of pointobservations. Sediment. Geol. 2012, 281, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Huvenne, V.A.I.; Blondel, P.; Henriet, J.P. Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Mar. Geol. 2002, 189, 323–341. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Heap, A.D.; Potter, A.; Huang, Z.; Daniell, J.J. Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin. Cont. Shelf Res. 2011, 31, 1365–1376. [Google Scholar] [CrossRef]
- Cui, X.; Yang, F.; Wu, Z.; Zhang, K.; Ai, B. Deep-sea sediment mixed pixel decomposition based on multibeam backscatter intensity segmentation. IEEE Trans. Geosci. Remote Sens. 2021, 99, 1–15. [Google Scholar] [CrossRef]
- Marsh, I.; Brown, C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV). Appl. Acoust. 2009, 70, 1269–1276. [Google Scholar] [CrossRef]
- Berthold, T.; Leichter, A.; Rosenhahn, B.; Berkhahn, V.; Valerius, J. Seabed sediment classification of side-scan sonar data using convolutional neural networks. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; IEEE: Piscataway, NJ, USA; pp. 1–8. [Google Scholar] [CrossRef]
- Xi, H.Y.; Wan, L.; Sheng, M.W.; Li, Y.M.; Liu, T. The study of the seabed side-scan acoustic images recognition using BP neural network. In Parallel Architecture, Algorithm and Programming; Springer: Singapore, 2017; pp. 130–141. [Google Scholar]
- Sun, C.; Hu, Y.; Shi, P. Probabilistic neural network based seabed sediment recognition method for side-scan sonar imagery. Sediment. Geol. 2020, 410, 105792. [Google Scholar] [CrossRef]
- Steele, S.M.; Ejdrygiewicz, J.; Dillon, J. Automated synthetic aperture sonar image segmentation using spatially coherent clustering. In Proceedings of the OCEANS 2021: San Diego—Porto, San Diego, CA, USA, 20–23 September 2021; Volume 3, p. 16. [Google Scholar]
- Qin, X.; Luo, X.; Wu, Z.; Shang, J. Optimizing the sediment classification of small side-scan sonar images based on deep learning. IEEE Access 2021, 9, 29416–29428. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, H.; Li, Y.; Zhao, J. A universal automatic bottom tracking method of side scan sonar data based on semantic segmentation. Remote Sens. 2021, 13, 1945. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, S. Segmentation of sonar image on seafloor sediments based on multiclass SVM. J. Coast. Res. 2018, 83, 597–602. [Google Scholar] [CrossRef]
- Viola, P.A.; Jones, M.J. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001; IEEE: Piscataway, NJ, USA; pp. 511–518. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; IEEE: Piscataway, NJ, USA; pp. 886–893. [Google Scholar]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, Y.H.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ultralytics. YOLOv5. 2020. Available online: https://github.com/ultralytics/YOLOv5 (accessed on 3 March 2022).
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Wei, X. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, Y.H.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [PubMed] [Green Version]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Li, Z.; Zhou, F. FSSD: Feature fusion single shot multibox detector. arXiv 2017, arXiv:1712.00960. [Google Scholar]
- Wkentaro. LabelMe. 2010. Available online: https://github.com/wkentaro/labelme (accessed on 10 September 2021).
- HeartaxLab. LabelImg. Available online: https://github.com/heartexlabs/labelImg (accessed on 14 September 2021).
- WesMcKinney. Transform. 2020. Available online: https://pytorch.org/vision/main/generated/torchvision.transforms.RandomVerticalFlip.html (accessed on 1 July 2022).
- Gupta, R.; Goodman, B.; Patel, N.; Hosfelt, R.; Sajeev, S.; Heim, E.; Doshi, J.; Lucas, K.; Choset, H.; Gaston, M. Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 10–17. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 801–818. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
Hyperparameter | Range |
---|---|
Input Size | 1280 × 720 pixel |
Activation | ReLU |
Optimizer | AdamW |
Loss | CE, BCE, IoU |
Batch Size | 16 |
Epoch | 100 |
Dropout | 0.2 |
IOU Threshold | 0.5 |
Score Threshold | 0.5 |
Background | Sand Wave | Rock | |
---|---|---|---|
Background | 17,451,115 | 77,733 | 710,954 |
Sand Wave | 5183 | 193,213 | 0 |
Rock | 161,597 | 167 | 753,638 |
Model | Base: YOLOX | YOLOv5 | SOTA: YOLOv7 | SOTA: YOLOv8 | Base: U-Net | DeepLabv3+ | Segformer | PSPNet | YOLO-C |
---|---|---|---|---|---|---|---|---|---|
Sand Wave AP | 0.64 | 0.30 | 0.74 | 0.64 | - | - | - | - | 0.53 |
Rock AP | 0.51 | 0.13 | 0.37 | 0.50 | - | - | - | - | 0.65 |
mAP | 0.5764 | 0.2174 | 0.5547 | 0.5700 | - | - | - | - | 0.5894 |
Sand Wave IoU | - | - | - | - | 0.72 | 0.45 | 0.71 | 0.54 | 0.46 |
Rock IoU | - | - | - | - | 0.34 | 0.28 | 0.36 | 0.04 | 0.70 |
Background IoU | - | - | - | - | 0.96 | 0.95 | 0.96 | 0.95 | 0.95 |
mIoU | - | - | - | - | 0.6734 | 0.5603 | 0.6741 | 0.5085 | 0.7036 |
Sand Wave PA | - | - | - | - | 0.90 | 0.84 | 0.82 | 0.67 | 0.97 |
Rock PA | - | - | - | - | 0.41 | 0.32 | 0.43 | 0.04 | 0.82 |
Background PA | - | - | - | - | 0.96 | 0.98 | 0.99 | 1.00 | 0.99 |
mPA | - | - | - | - | 0.7663 | 0.7138 | 0.7459 | 0.5693 | 0.9180 |
MAE | - | - | - | - | 0.0454 | 0.0437 | 0.0564 | 0.0544 | 0.0345 |
Model | Recognized Result of Imagery | The Size (Pixel) of Seabed Sediment | |
---|---|---|---|
Sand Wave | Rock | ||
YOLOX | 52,023 | 36,310 | |
U-Net | 32,475 | 10,352 | |
Mask R-CNN | 105 | 30,512 | |
YOLO-C | 43,587 | 31,684 |
Model | TWS Seabed Dataset | xBD Dataset | FPS (fps) | ||||||
---|---|---|---|---|---|---|---|---|---|
Detection | Segmentation | Detection | Segmentation | ||||||
mAP | F1 | mIoU | mPA | mAP | F1 | mIoU | mPA | ||
YOLOX | 57.64 | 54.50 | - | - | 37.46 | 40.00 | - | - | 127 |
YOLOv5 | 21.74 | 6.00 | - | - | 30.30 | 30.00 | - | - | 134 |
YOLOv7 | 55.47 | 37.00 | - | - | 35.75 | 37.00 | - | - | 137 |
YOLOv8 | 57.00 | 47.50 | - | - | 37.68 | 34.00 | - | - | 185 |
U-Net | - | - | 67.34 | 76.63 | - | - | 78.61 | 85.54 | 26 |
DeepLabv3+ | - | 56.03 | 71.38 | - | - | 75.08 | 83.49 | 56 | |
Segformer | - | - | 67.41 | 74.59 | - | - | 77.24 | 84.39 | 102 |
PSPNet | - | - | 50.85 | 56.93 | - | - | 70.94 | 78.29 | 75 |
YOLO-C | 58.94 | 41.50 | 70.36 | 91.80 | 37.70 | 42.00 | 79.92 | 90.52 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Shi, P.; Hu, Y. A Precise Semantic Segmentation Model for Seabed Sediment Detection Using YOLO-C. J. Mar. Sci. Eng. 2023, 11, 1475. https://doi.org/10.3390/jmse11071475
Chen X, Shi P, Hu Y. A Precise Semantic Segmentation Model for Seabed Sediment Detection Using YOLO-C. Journal of Marine Science and Engineering. 2023; 11(7):1475. https://doi.org/10.3390/jmse11071475
Chicago/Turabian StyleChen, Xin, Peng Shi, and Yi Hu. 2023. "A Precise Semantic Segmentation Model for Seabed Sediment Detection Using YOLO-C" Journal of Marine Science and Engineering 11, no. 7: 1475. https://doi.org/10.3390/jmse11071475
APA StyleChen, X., Shi, P., & Hu, Y. (2023). A Precise Semantic Segmentation Model for Seabed Sediment Detection Using YOLO-C. Journal of Marine Science and Engineering, 11(7), 1475. https://doi.org/10.3390/jmse11071475