The Need for an Environmental Notification System in the Lithuanian Coastal Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Sources
2.3. Methods
- (1)
- for the aerial photo charts
- (2)
- for the orthophotos
- (3)
- for the GPS survey data
3. Results and Discussion
3.1. Background for EASTMOC
3.2. Pilot Study
3.3. EASTMOC System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quadrado, G.P.; Goulart, E.S. Longshore sediment transport: Predicting rates in dissipative sandy beaches at southern Brazil. SN Appl. Sci. 2020, 2, 1421. [Google Scholar] [CrossRef]
- Eelsalu, M.; Parnell, K.E.; Soomere, T. Sandy beach evolution in the low–energy microtidal Baltic Sea: Attribution of changes to hydrometerological forcing. Geomorphology 2022, 414, 108383. [Google Scholar] [CrossRef]
- George, J.; Sanil Kumar, V.; Victor, G.; Gowthaman, R. Variability of the local wave regime and the wave–induced sediment transport along the Ganpatipule coast, eastern Arabian Sea. Reg. Stud. Mar. Sci. 2019, 31, 100759. [Google Scholar] [CrossRef]
- Sundar, V.; Sannasiraj, S.A. Longshore sediment transport rate from the field measured wave and sediment characteristics along the coast of Karaikal, India. ISH J. Hydraul. Eng. 2022. [Google Scholar] [CrossRef]
- Belibassakis, K.A.; Karathanasi, F.E. Modelling nearshore hydrodynamics and circulation under the impact of high waves at the coast of Varkiza in Saronic–Athens Gulf. Oceanologia 2017, 59, 350–364. [Google Scholar] [CrossRef]
- Karathanasi, F.E.; Belibassakis, K.A. A cost–effective method for estimating long–term effects of waves on beach erosion with application to Sitia Bay, Crete. Oceanologia 2019, 61, 276–290. [Google Scholar] [CrossRef]
- Hapke, C.J.; Kratzmann, M.G.; Himmelstoss, E.A. Geomorphic and human influence on large–scale coastal change. Geomorphology 2013, 199, 160–170. [Google Scholar] [CrossRef]
- Anderson, D.; Ruggiero, P.; Antolínez, J.A.A.; Méndez, F.J.; Allan, J. A Climate Index Optimized for Longshore Sediment Transport Reveals Interannual and Multidecadal Littoral Cell Rotations. J. Geophys. Res. Earth Surf. 2018, 123, 1958–1981. [Google Scholar] [CrossRef]
- Weisse, R.; Dailidiene, I.; Hünicke, B.; Kahma, K.; Madsen, K.; Omstedt, A.; Parnell, K.; Schöne, T.; Soomere, T.; Zhang, W.; et al. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dyn. 2021, 12, 871–898. [Google Scholar] [CrossRef]
- Gong, Z.; Jin, C.; Zhang, C.; Zhou, Z.; Zhang, Q.; Li, H. Temporal and spatial morphological variations along a cross–shore intertidal profile, Jiangsu, China. Cont. Shelf Res. 2017, 144, 1–9. [Google Scholar] [CrossRef]
- Reeve, D.E.; Horrillo–Caraballo, J.; Karunarathna, H.; Pan, S. A new perspective on meso–scale shoreline dynamics through data–driven analysis. Geomorphology 2019, 341, 169–191. [Google Scholar] [CrossRef]
- Almonacid–Caballer, J.; Sánchez–García, E.; Pardo–Pascual, J.E.; Balaguer–Beser, A.A.; Palomar–Vázquez, J. Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid–term coastal evolution indicator. Mar. Geol. 2016, 372, 79–88. [Google Scholar] [CrossRef]
- Benkhattab, F.Z.; Hakkou, M.; Bagdanavičiūtė, I.; Mrini, A.E.; Zagaoui, H.; Rhinane, H.; Maanan, M. Spatial–temporal analysis of the shoreline change rate using automatic computation and geospatial tools along the Tetouan coast in Morocco. Nat. Hazards 2020, 104, 519–536. [Google Scholar] [CrossRef]
- Hanslow, D.J. Beach erosion trend measurement: A comparison of trend indicators. J. Coast. Res. 2007, 588–593. [Google Scholar]
- Fortes, C.J.E.M.; Reis, M.T.; Poseiro, P.; Santos, J.A.; Pinheiro, L.; Craveiro, J.; Rodrigues, A.; Sabino, A.; Silva, S.F.; Ferreira, J.C.; et al. HIDRALERTA Project: A Flood Forecast and Alert System in Coastal and Port Areas. IWA World Water Congr. Exhib. 2014, 21–26. [Google Scholar] [CrossRef]
- Phillips, M.R.; Jones, A.L. Erosion and tourism infrastructure in the coastal zone: Problems, consequences and management. Tour. Manag. 2006, 27, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Baltranaitė, E.; Kelpšaitė-rimkienė, L.; Povilanskas, R.; Šakurova, I.; Kondrat, V. Measuring the impact of physical geographical factors on the use of coastal zones based on bayesian networks. Sustainability 2021, 13, 7173. [Google Scholar] [CrossRef]
- Kondrat, V.; Šakurova, I.; Baltranaitė, E.; Kelpšaitė–Rimkienė, L. EASTMOC: Environmental Alert System for Timely Maintenance of the Coastal Zone. Oceanography 2023, 36, 8. [Google Scholar] [CrossRef]
- Kondrat, V.; Šakurova, I.; Baltranaitė, E.; Kelpšaitė–Rimkienė, L. Natural and anthropogenic factors shaping the shoreline of klaipėda, Lithuania. J. Mar. Sci. Eng. 2021, 9, 1456. [Google Scholar] [CrossRef]
- Šakurova, I.; Kondrat, V.; Baltranaitė, E.; Vasiliauskienė, E.; Kelpšaitė–Rimkienė, L. Assessment of Coastal Morphology on the South–Eastern Baltic Sea Coast: The Case of Lithuania. Water 2023, 15, 79. [Google Scholar] [CrossRef]
- Ouillon, S. Why and how do we study sediment transport? Focus on coastal zones and ongoing methods. Water 2018, 10, 390. [Google Scholar]
- Keevallik, S.; Soomere, T. Regime shifts in the surface–level average air flow over the gulf of Finland during 1981–2010. Proc. Est. Acad. Sci. 2014, 63, 428–437. [Google Scholar] [CrossRef]
- Keevallik, S.; Soomere, T. Shifts in early spring wind regime in North–East Europe (1955–2007). Clim. Past 2008, 4, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Cuevas Jiménez, A.; Euán Ávila, J.I.; Villatoro Lacouture, M.M.; Silva Casarín, R. Classification of Beach Erosion Vulnerability on the Yucatan Coast. Coast. Manag. 2016, 44, 333–349. [Google Scholar] [CrossRef]
- Weisse, R.; Bisling, P.; Gaslikova, L.; Geyer, B.; Groll, N.; Hortamani, M.; Matthias, V.; Maneke, M.; Meinke, I.; Meyer, E.M.; et al. Climate services for marine applications in Europe. Earth Perspect. 2015, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Bitinas, A.; Žaromskis, R.; Gulbinskas, S.; Damušyte, A.; Žilinskas, G.; Jarmalavičius, D. The results of integrated investigations of the Lithuanian coast of the Baltic Sea: Geology, geomorphology, dynamics and human impact. Geol. Q. 2005, 49, 355–362. [Google Scholar]
- Jakimavičius, D.; Kriaučiūnienė, J.; Šarauskienė, D. Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia 2018, 60, 378–389. [Google Scholar] [CrossRef]
- Kriaučiūnienė, J.; Gailiušis, B.; Rimavičiūtė, E. Modelling of shoreface nourishment in the Lithuanian nearshore of the Baltic Sea. Geologija 2006, 53, 28–37. [Google Scholar]
- Žilinskas, G.; Janušaitė, R.; Jarmalavičius, D.; Pupienis, D. The impact of Klaipėda Port entrance channel dredging on the dynamics of coastal zone, Lithuania. Oceanologia 2020, 62, 489–500. [Google Scholar] [CrossRef]
- Kelpšaitė, L.; Dailidiene, I. Influence of wind wave climate change on coastal processes in the eastern Baltic Sea. J. Coast. Res. 2011, 220–224. [Google Scholar]
- Viška, M.; Soomere, T. Simulated and observed reversals of wave–driven alongshore sediment transport at the eastern baltic sea coast. Baltica 2013, 26, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Soomere, T.; Bishop, S.R.; Viška, M.; Räämet, A. An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim. Res. 2015, 62, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Inácio, M.; Gomes, E.; Bogdzevič, K.; Kalinauskas, M.; Zhao, W.; Pereira, P. Mapping and assessing coastal recreation cultural ecosystem services supply, flow, and demand in Lithuania. J. Environ. Manag. 2022, 323, 116175. [Google Scholar] [CrossRef]
- Tourism Law of the Republic of Lithuania. 2018. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/3c3504d2804011e89188e16a6495e98c (accessed on 29 June 2023).
- Kutorga, E.; Adamonyte, G.; Iršenaite, R.; Juzenas, S.; Kasparavičius, J.; Markovskaja, S.; Motiejunaite, J.; Treigiene, A. Wildfire and post–fire management effects on early fungal succession in Pinus mugo plantations, located in Curonian Spit (Lithuania). Geoderma 2012, 191, 70–79. [Google Scholar] [CrossRef]
- Armaitiene, A.; Bertuzyte, R.; Vaskaitis, E. Conceptual Framework for Rethinking of Nature Heritage Management and Health Tourism in National Parks. Procedia—Soc. Behav. Sci. 2014, 148, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Jarmalavičius, D.; Žilinskas, G.; Pupienis, D. Impact of Klaipda port jetties reconstruction on adjacent sea coast dynamics. J. Environ. Eng. Landsc. Manag. 2012, 20, 240–247. [Google Scholar] [CrossRef]
- Bagdanavičiūtė, I.; Kelpšaitė–Rimkienė, L.; Galinienė, J.; Soomere, T. Index based multi–criteria approach to coastal risk assesment. J. Coast. Conserv. 2019, 23, 785–800. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef] [PubMed]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee–Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Hinkel, J.; Nicholls, R.J.; Tol, R.S.J.; Wang, Z.B.; Hamilton, J.M.; Boot, G.; Vafeidis, A.T.; McFadden, L.; Ganopolski, A.; Klein, R.J.T. A global analysis of erosion of sandy beaches and sea–level rise: An application of DIVA. Glob. Planet. Change 2013, 111, 150–158. [Google Scholar] [CrossRef]
- Hasan, K.; Abdullah, S.K. Determining factors of tourists’ loyalty to beach tourism destinations: A structural model. Asia Pacific J. Mark. Logist. 2020, 32, 169–187. [Google Scholar] [CrossRef]
- Picken, F. The SAGE International Encyclopedia of Travel and Tourism 2017; SAGE: Newcastle upon Tyne, UK.
- Baltranaitė, E.; Jurkus, E.; Povilanskas, R. Impact of physical geographical factors on sustainable planning of South Baltic seaside resorts. Baltica 2017, 30, 119–131. [Google Scholar] [CrossRef]
- Azizah, F.N.; Kausar, D.R.K.; Gunadi, I.M.A.; Yuan, Y. The Preferences of Indonesian Outbound Tourists Toward Travel Types and Tourism Attributes. In Proceedings of the First International Conference on Global Innovation and Trends in Economy, InCoGITE, Java, Indonesia, 7 November 2019. [Google Scholar]
- Abromas, J.; Grecevičius, P.; Jankauskaitė, A.; Piekienė, N. Trends of Lithuanian Cultural Landscapes in the Recreational Territorial System of the Southeast Baltic Sea Region. Rural Sustain. Res. 2018, 39, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Šimanauskienė, R.; Linkevičienė, R.; Povilanskas, R.; Satkūnas, J.; Veteikis, D.; Baubinienė, A.; Taminskas, J. Curonian Spit Coastal Dunes Landscape: Climate Driven Change Calls for the Management Optimization. Land 2022, 11, 877. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; Open-File Report 2018-1179; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Marbel, B. GLobal Mapper Getting Started Guide; Blue Marble Geographics: Hallowell, ME, USA, 2019. [Google Scholar]
- Mills, G.B. International Hydrographic Organization Standards for Hydrographic Surveys. Int. Hydrogr. Rev. 2020, 6, 5–13. [Google Scholar]
- Crowell, M.; Leatherman, S.P.; Buckley, M.K. Shoreline Change Rate Analysis: Long Term Versus Short Term Data. Shore and Beach 1993, 61, 13–20. [Google Scholar]
- Soomere, T.; Viška, M. Simulated wave–driven sediment transport along the eastern coast of the Baltic Sea. J. Mar. Syst. 2014, 129, 96–105. [Google Scholar] [CrossRef]
- Le Roux, J.P.; Rojas, E.M. Sediment transport patterns determined from grain size parameters: Overview and state of the art. Sediment. Geol. 2007, 202, 473–488. [Google Scholar] [CrossRef]
- Prodger, S.; Russell, P.; Davidson, M. Grain–size distributions on high–energy sandy beaches and their relation to wave dissipation. Sedimentology 2017, 64, 1289–1302. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhan, C.; Liu, Y.; Bi, J.; Li, G.; Cui, B.; Wang, L.; Liu, X.; Wang, Q. Retrieval of Remotely Sensed Sediment Grain Size Evolution Characteristics along the Southwest Coast of Laizhou Bay Based on Support Vector Machine Learning. J. Mar. Sci. Eng. 2022, 10, 968. [Google Scholar] [CrossRef]
- Čerkasova, N.; Ertürk, A.; Zemlys, P.; Denisov, V.; Umgiesser, G. Curonian Lagoon drainage basin modelling and assessment of climate change impact. Oceanologia 2016, 58, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Umgiesser, G.; Zemlys, P.; Erturk, A.; Razinkova–Baziukas, A.; Mezine, J.; Ferrarin, C. Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing. Ocean Sci. 2016, 12, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Mežine, J.; Ferrarin, C.; Vaičiute, D.; Idzelyte, R.; Zemlys, P.; Umgiesser, G. Sediment transport mechanisms in a lagoon with high river discharge and sediment loading. Water 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Viška, M. Sediment Transport Patterns Along the Eastern Coasts of the Baltic Sea; Tallin University of Technology: Tallin, Estonia, 2014; ISBN 9789949236381. [Google Scholar]
- Žaromskis, R.; Gulbinskas, S. Main patterns of coastal zone development of the Curonian Spit, Lithuania. Baltica 2010, 23, 146–156. [Google Scholar]
- Lampe, R.; Nordstrom, K.F.; Jackson, N.L. Cross–shore Distribution of Longshore Sediment Transport Rates on a Barred Non–Tidal Beach. Estuaries 2003, 26, 1426–1436. [Google Scholar] [CrossRef]
- Marcot, B.G.; Penman, T.D. Advances in Bayesian network modelling: Integration of modelling technologies. Environ. Model. Softw. 2019, 111, 386–393. [Google Scholar] [CrossRef]
- Geurts, L. An Overview of the B Programming Language or B without Tears. ACM SIGPLAN Not. 1982, 17, 49–58. [Google Scholar] [CrossRef] [Green Version]
A: The Curonian Spit Coast | B: The Mainland Coast | |
---|---|---|
Nature protected areas | Kuršių Nerija (Curonian Spit) National Park | Baltic Sea Thalassological Reserve, Pajūris Regional Park |
Natura 2000 sites | Coastal area, nearshore, and coastal zone’s terrestrial areas | Coastal area, nearshore, and coastal zone’s terrestrial areas |
UNESCO World Heritage sites | Curonian Spit | |
Designated resorts | Neringa | |
Official beach | Smiltynės I, Smiltynės II | Melnragės I, Melnragės II, Handicapt, Girulių |
Blue Flag sites | Smiltynės I | Melnragės II |
State of shoreline | Mostly accumulative | Mostly erosive |
Granulometry | Very well and moderately sorted fine sand prevails | S orting of the sediments differs in a cross–shore profile |
Dumping | D1—distant dumping area | D2—near dumping area, D3—nearshore dumping area |
2014 | 932,711 m3 | 114,571 m3 in a nearshore dumping area |
2015 | 779,645 m3 | 581,820 m3 in near dumping area, 112,603 m3 in nearshore dumping area |
2016 | 672,778 m3 | 47,772 m3 in near dumping area, 29,548 m3 in nearshore dumping area |
2017 | 458,065 m3 | 28,273 m3 in near dumping area, 46,727 m3 in nearshore dumping area |
2018 | 945,482 m3 | 48,898 m3 in a nearshore dumping area |
Accessibility | Waterway only | On land transportation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šakurova, I.; Kondrat, V.; Baltranaitė, E.; Gardauskė, V. The Need for an Environmental Notification System in the Lithuanian Coastal Area. J. Mar. Sci. Eng. 2023, 11, 1561. https://doi.org/10.3390/jmse11081561
Šakurova I, Kondrat V, Baltranaitė E, Gardauskė V. The Need for an Environmental Notification System in the Lithuanian Coastal Area. Journal of Marine Science and Engineering. 2023; 11(8):1561. https://doi.org/10.3390/jmse11081561
Chicago/Turabian StyleŠakurova, Ilona, Vitalijus Kondrat, Eglė Baltranaitė, and Vita Gardauskė. 2023. "The Need for an Environmental Notification System in the Lithuanian Coastal Area" Journal of Marine Science and Engineering 11, no. 8: 1561. https://doi.org/10.3390/jmse11081561
APA StyleŠakurova, I., Kondrat, V., Baltranaitė, E., & Gardauskė, V. (2023). The Need for an Environmental Notification System in the Lithuanian Coastal Area. Journal of Marine Science and Engineering, 11(8), 1561. https://doi.org/10.3390/jmse11081561