Advances in Wave Energy Conversion with Data-Driven Models
- Computational fluid dynamics (CFD), which exhibits high-fidelity for reproducing wave–structure interactions and solving the Navier–Stokes equations, but requires substantial computational time;
- Potential flow theory (PFT), which is less computationally demanding at the expense of model fidelity and accuracy limitations inherent to theoretical assumptions: from fluid properties (e.g., incompressible and irrotational) to higher-order, non-linear terms (e.g., viscous hydrodynamic damping).
Funding
Acknowledgments
Conflicts of Interest
References
- Taveira-Pinto, F.; Iglesias, G.; Rosa-Santos, P.; Deng, Z.D. Preface to Special Topic: Marine Renewable Energy. J. Renew. Sustain. Energy 2015, 7, 061601. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.; Nunes, D.; Clemente, D.; Mathias, N.; Correia, J.M.; Rosa-Santos, P.; Taveira-Pinto, F.; Morais, T.; Pereira, A.; Ventura, J. Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives. Energy Environ. Sci. 2020, 13, 2657–2683. [Google Scholar] [CrossRef]
- Ocean Energy Europe. Ocean Energy: Key Trends and Statistics 2022; Ocean Energy Europe: Brussels, Belgium, 2023. [Google Scholar]
- Contestabile, P.; Vicinanza, D. Coastal Defence Integrating Wave-Energy-Based Desalination: A Case Study in Madagascar. J. Mar. Sci. Eng. 2018, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.; Ramos, M.; Esteves, R.; Correia, J.; Clemente, D.; Gonçalves, F.; Mathias, N.; Gomes, M.; Silva, J.; Duarte, C.; et al. Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: Performance assessment in realistic sea conditions. Nano Energy 2021, 84, 105890. [Google Scholar] [CrossRef]
- Clemente, D.; Rosa-Santos, P.; Ferradosa, T.; Taveira-Pinto, F. Wave energy conversion energizing offshore aquaculture: Prospects along the Portuguese coastline. Renew. Energy 2023, 204, 347–358. [Google Scholar] [CrossRef]
- Calheiros-Cabral, T.; Majidi, A.G.; Ramos, V.; Giannini, G.; Rosa-Santos, P.; Taveira-Pinto, F. Development and Assessment of a Hybrid Breakwater-Integrated Wave Energy Converter. Int. Mar. Energy J. 2022, 5, 281–291. [Google Scholar] [CrossRef]
- Serna, Á.; Tadeo, F. Offshore hydrogen production from wave energy. Int. J. Hydrogen Energy 2014, 39, 1549–1557. [Google Scholar] [CrossRef]
- Pecher, A.; Kofoed, J.P. (Eds.) Handbook of Ocean Wave Energy; Springer: Cham, Switzerland, 2017; Volume 7. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Ringwood, J.V. Geometric optimisation of wave energy conversion devices: A survey. Appl. Energy 2021, 297, 117100. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Greaves, D.; Jin, S. Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments. Appl. Energy 2023, 341, 121072. [Google Scholar] [CrossRef]
- Clemente, D.; Teixeira-Duarte, F.; Rosa-Santos, P.; Taveira-Pinto, F. Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource. Energies 2023, 16, 4660. [Google Scholar] [CrossRef]
- Wang, D.; Jin, S.; Hann, M.; Conley, D.; Collins, K.; Greaves, D. Power output estimation of a two-body hinged raft wave energy converter using HF radar measured representative sea states at Wave Hub in the UK. Renew. Energy 2023, 202, 103–115. [Google Scholar] [CrossRef]
- Vieira, F.; Cavalcante, G.; Campos, E.; Taveira-Pinto, F. A methodology for data gap filling in wave records using Artificial Neural Networks. Appl. Ocean Res. 2020, 98, 102109. [Google Scholar] [CrossRef]
- Pasta, E.; Carapellese, F.; Brandimarte, P.; Parrinello, L.; Mattiazzo, G. A Model-Free Control Strategy Based on Artificial Neural Networks for PeWEC. In Proceedings of the 14th European Wave and Tidal Energy Conference, Plymouth, UK, 5–9 September 2021; p. 9. [Google Scholar]
- Garcia-Teruel, A.; DuPont, B.; Forehand, D.I. Hull geometry optimisation of wave energy converters: On the choice of the optimisation algorithm and the geometry definition. Appl. Energy 2020, 280, 115952. [Google Scholar] [CrossRef]
- Teixeira-Duarte, F.; Clemente, D.; Giannini, G.; Rosa-Santos, P.; Taveira-Pinto, F. Review on layout optimization strategies of offshore parks for wave energy converters. Renew. Sustain. Energy Rev. 2022, 163, 112513. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F. Advances in Wave Energy Conversion with Data-Driven Models. J. Mar. Sci. Eng. 2023, 11, 1591. https://doi.org/10.3390/jmse11081591
Clemente D, Rosa-Santos P, Taveira-Pinto F. Advances in Wave Energy Conversion with Data-Driven Models. Journal of Marine Science and Engineering. 2023; 11(8):1591. https://doi.org/10.3390/jmse11081591
Chicago/Turabian StyleClemente, Daniel, Paulo Rosa-Santos, and Francisco Taveira-Pinto. 2023. "Advances in Wave Energy Conversion with Data-Driven Models" Journal of Marine Science and Engineering 11, no. 8: 1591. https://doi.org/10.3390/jmse11081591
APA StyleClemente, D., Rosa-Santos, P., & Taveira-Pinto, F. (2023). Advances in Wave Energy Conversion with Data-Driven Models. Journal of Marine Science and Engineering, 11(8), 1591. https://doi.org/10.3390/jmse11081591