A Modulation Recognition System for Underwater Acoustic Communication Signals Based on Higher-Order Cumulants and Deep Learning
Abstract
:1. Introduction
- (1)
- An improvedsixth-order cumulant is proposed for the identification of OFDM signals.
- (2)
- An improved bispectrum is proposed for the identification of BPSK, QPSK, 2FSK and 4FSK signals.
- (3)
- Extensive simulations are conducted in a theoretical computer simulation environment and a Bellhop simulation environment. The simulations involve the addition of realistic in-band colored noise and multipath effects to the transmitted signals. The simulation outcomes validate the effectiveness of the proposed techniques. Moreover, field experiments conducted in an actual lake environment furnish additional proof of the effectiveness and resilience of the proposed system.
2. System Model
2.1. Signal Model
2.2. Underwater Acoustic Channel Analysis
2.3. Theoretical Analysis of Higher-Order Cumulant
2.3.1. Higher-Order Cumulant
2.3.2. High-Order Spectral Analysis
3. Proposed Methods
3.1. System Framework
3.2. Neural Network Model
4. Experiment and Verification
4.1. Simulation Verification
4.2. Bellhop Dataset Simulation Validation
4.3. Lake-Test Dataset Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2FSK | 2-Frequency Shift Keying |
4FSK | 4-Frequency Shift Keying |
AMC | Automatic Modulation Classification |
BPSK | Binary Phase Shift Keying |
CNN | Convolutional Neural Networks |
CV | Computer Vision |
DL | Deep Learning |
FB | feature-based |
LB | likelihood-based |
ML | Machine Learning |
OFDM | Orthogonal Frequency Division Multiplexing |
QPSK | Quadrature Phase Shift Keying |
ResNet | Residual Network |
SNR | Signal-to-Noise Ratio |
STFT | Short-Time Fourier Transform |
UWAC | Underwater Acoustic Communication |
References
- Peurifoy, J.; Shen, Y.; Jing, L.; Yang, Y.; Cano-Renteria, F.; DeLacy, B.G.; Joannopoulos, J.D.; Tegmark, M.; Soljačić, M. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 2018, 4, eaar4206. [Google Scholar] [CrossRef] [PubMed]
- Sheverdin, A.; Monticone, F.; Valagiannopoulos, C. Photonic inverse design with neural networks: The case of invisibility in the visible. Phys. Rev. Appl. 2020, 14, 024054. [Google Scholar] [CrossRef]
- Lin, X.; Eldemerdash, Y.A.; Dobre, O.A.; Zhang, S.; Li, C. Modulation classification using received signal’s amplitude distribution for coherent receivers. IEEE Photonics Technol. Lett. 2017, 29, 1872–1875. [Google Scholar] [CrossRef]
- Si, H.; Hu, X.; Shi, Z.; Li, S. Non-cooperative signal modulation recognition algorithm based on joint feature parameter extraction. J. Commun. 2020, 41, 172–185. (In Chinese) [Google Scholar]
- Xie, L.; Wan, Q. Cyclic feature-based modulation recognition using compressive sensing. IEEE Wirel. Commun. Lett. 2017, 6, 402–405. [Google Scholar] [CrossRef]
- Jajoo, G.; Kumar, Y.; Yadav, S.K. Blind signal PSK/QAM recognition using clustering analysis of constellation signature in flat fading channel. IEEE Commun. Lett. 2019, 23, 1853–1856. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, S.; Yin, Z.; Ma, B.; Yang, Z. Robust automatic modulation classification under varying noise conditions. IEEE Access 2017, 5, 19733–19741. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, G.; Ohtsuki, T.; Adachi, F. Multi-task learning for generalized automatic modulation classification under non-Gaussian noise with varying SNR conditions. IEEE Trans. Wirel. Commun. 2021, 20, 3587–3596. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Yang, J.; Gui, G. Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Trans. Veh. Technol. 2019, 68, 4074–4077. [Google Scholar] [CrossRef]
- Zheng, S.; Qi, P.; Chen, S.; Yang, X. Fusion methods for CNN-based automatic modulation classification. IEEE Access 2019, 7, 66496–66504. [Google Scholar] [CrossRef]
- Nandi, A.K.; Azzouz, E.E. Algorithms for automatic modulation recognition of communication signals. IEEE Trans. Commun. 1998, 46, 431–436. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. In Proceedings of the Engineering Applications of Neural Networks: 17th International Conference, EANN 2016, Aberdeen, UK, 2–5 September 2016; Proceedings 17. Springer: Berlin/Heidelberg, Germany, 2016; pp. 213–226. [Google Scholar]
- O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 2018, 12, 168–179. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, U.; Kim, S.C. Spectrogram-based automatic modulation recognition using convolutional neural network. In Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 843–845. [Google Scholar]
- Zhang, Z.; Wang, C.; Gan, C.; Sun, S.; Wang, M. Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD. IEEE Trans. Signal Inf. Process. Netw. 2019, 5, 469–478. [Google Scholar] [CrossRef]
- Cheng, E.; Yan, J.; Sun, H.; Qi, J. Research on MPSK modulation classification of underwater acoustic communication signals. In Proceedings of the 2016 IEEE/OES China Ocean Acoustics (COA), Harbin, China, 9–11 January 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Xu, Z.; Wu, X.; Gao, D.; Su, W. Blind Modulation Recognition of UWA Signals with Semi-Supervised Learning. In Proceedings of the 2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 25–27 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Li, Y.; Wang, B.; Shao, G.; Shao, S.; Pei, X. Blind detection of underwater acoustic communication signals based on deep learning. IEEE Access 2020, 8, 204114–204131. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Shao, G.; Shao, S. Automatic modulation classification for short burst underwater acoustic communication signals based on hybrid neural networks. IEEE Access 2020, 8, 227793–227809. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Li, Y. IAFNet: Few-shot learning for modulation recognition in underwater impulsive noise. IEEE Commun. Lett. 2022, 26, 1047–1051. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, X.; Leng, C.; Wang, J.; Mao, S. Modulation recognition of underwater acoustic signals using deep hybrid neural networks. IEEE Trans. Wirel. Commun. 2022, 21, 5977–5988. [Google Scholar] [CrossRef]
- Zhang, X.D. Modern signal processing. In Modern Signal Processing; De Gruyter: Berlin, Germany, 2022. [Google Scholar]
- Yang, J.; Liu, H.; Yuan, B.X.; Sun, G.; Yuan, Y. Modulation Recognition for Communication Signals: Principles and Algorithms; Posts and Telecom Press: Beijing, China, 2022. [Google Scholar]
- Zhao, X.; Guo, C.; Li, J. Mixed recognition algorithm for signal modulation schemes by high-order cumulants and cyclic spectrum. J. Electron. Inf. Technol. 2016, 38, 674–680. [Google Scholar]
- Tan Xiaoheng, C.Y. Automatic digital modulation recognition based on combined feature parameters. Syst. Eng. Electron. 2011, 33, 2733–2736. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Fang, C.; Xue, Z. Signal classification method based on complete bispectrum and convolutional neural network. Appl. Res. Comput. 2018, 35, 3766–3769. (In Chinese) [Google Scholar]
- Liu, L.; Wu, K.; Chen, J.; Li, M. Modulation Recognition Method of Underwater Acoustic Communication Signal Based on Transfer Learning. J. Ocean Technol. 2022, 41, 1–11. (In Chinese) [Google Scholar]
Modulation Mode | |||||||||
---|---|---|---|---|---|---|---|---|---|
2ASK | E * | E | 2E2 | 2E2 | 2E2 | 16E3 | 16E³ | 13E³ | 35 |
4ASK | E | E | 1.36E² | 1.36E² | 1.36E² | 8.32E³ | 8.32E³ | 9.16E³ | / |
BPSK | E | E | 2E² | 2E² | 2E² | 16E³ | 16E³ | 13E³ | 272 |
QPSK | 0 | E | E² | 0 | E² | 0 | 4E³ | 4E³ | 34 |
8PSK | 0 | E | 0 | 0 | E² | 0 | 0 | 4E³ | / |
2FSK | 0 | E | 0 | 0 | E² | 0 | 0 | 4E³ | 0 |
4FSK | 0 | E | 0 | 0 | E² | 0 | 0 | 3E³ | / |
8FSK | 0 | E | 0 | 0 | E² | 0 | 0 | 3E³ | / |
16QAM | 0 | E | 0.68E² | 0 | 0.68E² | 0 | 2.08E³ | 2.08E³ | 14 |
64QAM | 0 | E | 0.619E² | 0 | 0.619E² | 0 | 1.80E³ | 1.80E³ | / |
OFDM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Structure | Layer Name | Input Channels | Output Channels | Stride | Padding |
---|---|---|---|---|---|
Input | Conv2d(3 × 3) | 16 | 16 | 1 | 1 |
BatchNorm2d | / | 16 | / | / | |
ReLU | inplace = True | ||||
ResBlock × 3 | Conv2d(3 × 3) | 16 | 16 | 1 | 1 |
BatchNorm2d | / | 16 | / | / | |
ReLU | inplace = True | ||||
Conv2d(3 × 3) | * | 16 | 1 | 1 | |
BatchNorm2d | / | 16 | / | / | |
ReLU | inplace = True | ||||
Output | AvgPool2d | kernel_size = 3 | |||
Full connection_1 | 16,384 | 256 | / | / | |
Full connection_2 | 256 | 4 | / | / |
Signal Frequency Band: | 4000–8000 Hz | |||
---|---|---|---|---|
Sampling Frequency: | 48,000 Hz | |||
Modulation Mode | Source Length/bit | Data Rate/bps | Code Width/ms | Signal Duration/s |
BPSK | 40,000 | 4000 | 0.25 | 10.01 |
QPSK | 80,000 | 8000 | 0.25 | 10.01 |
2FSK | 500 | 47 | 21.00 | 10.68 |
4FSK | 500 | 47 | 42.00 | 10.67 |
OFDM-BPSK | 28,000 | 2678 | 16.00 | 10.46 |
OFDM-QPSK | 56,000 | 5357 | 16.00 | 10.45 |
Information Source: | 526 Character English Short Sentence | |||
---|---|---|---|---|
Signal Frequency Band: | 4000–8000 Hz | |||
Synchronization Head | LFM Signal with a Width of 0.1 s | |||
Modulation Mode | Source Length/bit | Data Rate/bps | Code Width/ms | Signal Duration/s |
BPSK | 20,000 | 4000 | 0.25 | 5.40 |
QPSK | 80,000 | 8000 | 0.25 | 10.40 |
2FSK | 500 | 10 | 100.00 | 50.40 |
4FSK | 500 | 10 | 200.00 | 50.40 |
OFDM-BPSK | 80,000 | 3200 | 21.00 | 25.25 |
OFDM-QPSK | 80,000 | 6400 | 21.00 | 12.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; He, C.; Jing, L.; Zhou, C.; Long, C.; Li, J. A Modulation Recognition System for Underwater Acoustic Communication Signals Based on Higher-Order Cumulants and Deep Learning. J. Mar. Sci. Eng. 2023, 11, 1632. https://doi.org/10.3390/jmse11081632
Zhang R, He C, Jing L, Zhou C, Long C, Li J. A Modulation Recognition System for Underwater Acoustic Communication Signals Based on Higher-Order Cumulants and Deep Learning. Journal of Marine Science and Engineering. 2023; 11(8):1632. https://doi.org/10.3390/jmse11081632
Chicago/Turabian StyleZhang, Run, Chengbing He, Lianyou Jing, Chaopeng Zhou, Chao Long, and Jiachao Li. 2023. "A Modulation Recognition System for Underwater Acoustic Communication Signals Based on Higher-Order Cumulants and Deep Learning" Journal of Marine Science and Engineering 11, no. 8: 1632. https://doi.org/10.3390/jmse11081632
APA StyleZhang, R., He, C., Jing, L., Zhou, C., Long, C., & Li, J. (2023). A Modulation Recognition System for Underwater Acoustic Communication Signals Based on Higher-Order Cumulants and Deep Learning. Journal of Marine Science and Engineering, 11(8), 1632. https://doi.org/10.3390/jmse11081632