Mussel Meal as a Promotor of Growth Performance for the Whiteleg Shrimp (Litopenaeus vannamei)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shrimp
2.2. Mussel Meal Preparation
2.3. Diets
2.4. Experimental Set Up
2.5. Biometry
2.6. Shrimp Growth Performance
where the wet weight gain is the final weight − initial weight.
where g = (ln Wt − ln Wi) × t−1, Wt and Wi are the final and initial wet weights, respectively and t is the duration of the trial in days.
2.7. Thermal Shock
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Thermal Shock
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of the World Fisheries and Aquaculture. Towards Blue Transformation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2021. [Google Scholar]
- Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.d.N.; Martins, M.A.; Coman, G.J.; Truong, H.H.; Noble, T.H.; Simon, C.J. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals 2022, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mitra, A.; Rahimnejad, S.; Chi, S.; Kumar, V.; Tan, B.; Niu, J.; Xie, S. Retrospect of Fish Meal Substitution in Pacific White Shrimp (Litopenaeus Vannamei) Feed: Alternatives, Limitations and Future Prospects. Rev. Aquac. 2023; early view. [Google Scholar] [CrossRef]
- Jönsson, L.; Elwinger, K. Mussel Meal as a Replacement for Fish Meal in Feeds for Organic Poultry—A Pilot Short-Term Study. Acta Agric. Scand. A Anim. Sci. 2009, 59, 22–27. [Google Scholar] [CrossRef]
- Petersen, J.K.; Hasler, B.; Timmermann, K.; Nielsen, P.; Tørring, D.B.; Larsen, M.M.; Holmer, M. Mussels as a Tool for Mitigation of Nutrients in the Marine Environment. Mar. Pollut. Bull. 2014, 82, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Suplicy, F.M. A Review of the Multiple Benefits of Mussel Farming. Rev. Aquac. 2020, 12, 204–223. [Google Scholar] [CrossRef]
- Mongile, F.; Mandrioli, L.; Mazzoni, M.; Pirini, M.; Zaccaroni, A.; Sirri, R.; Parma, L.; Gatta, P.P.; Sarli, G.; Bonaldo, A. Dietary Inclusion of Mussel Meal Enhances Performance and Improves Feed and Protein Utilization in Common Sole (Solea solea, Linnaeus, 1758) Juveniles. J. Appl. Ichthyol. 2015, 31, 1077–1085. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Y.; Tao, S.; Liao, Y.; Yang, C.; Cui, C.; Yang, J.; Yang, Y.C.N.-P.D.F. Effects of Replacing Fish Meal with Mussel (Cristaria plicata) Meat on Growth, Digestive Ability, Antioxidant Capacity and Hepatic IGF-I Gene Expression in Juvenile Ussuri Catfish (Pseudobagrus ussuriensis). Aquac. Res. 2019, 50, 826–835. [Google Scholar] [CrossRef]
- Nagel, F.; von Danwitz, A.; Schlachter, M.; Kroeckel, S.; Wagner, C.; Schulz, C. Blue Mussel Meal as Feed Attractant in Rapeseed Protein-Based Diets for Turbot (Psetta maxima L.). Aquac. Res. 2014, 45, 1964–1978. [Google Scholar] [CrossRef]
- Cavalli, R.O.; Zimermann, S.; Speck, R.C. Growth and Feed Utilization of the Shrimp Farfantepenaeus paulensis Fed Diets Containing Different Marine Protein Sources. Ciênc. Rural 2004, 34, 891–896. [Google Scholar] [CrossRef]
- Kikuchi, K.; Furuta, T. Use of Defatted Soybean Meal and Blue Mussel Meat as Substitute for Fish Meal in the Diet of Tiger Puffer, Takifugu rubripes. J. World Aquac. Soc. 2009, 40, 472–482. [Google Scholar] [CrossRef]
- Cruz, A.C.D.; Ombac, J.E.; Siapno, K.C.; Reyes, C.R.; Aban, S.M. Growth and Survival of Giant Tiger Prawn (Penaeus monodon) Juveniles Fed with Formulated Diets Containing Different Levels of Charru Mussel (Mytella charruana) Meal. J. Nat. Allied Sci. 2022, VI, 40–55. [Google Scholar]
- Vidakovic, A.; Langeland, M.; Sundh, H.; Sundell, K.; Olstorpe, M.; Vielma, J.; Kiessling, A.; Lundh, T. Evaluation of Growth Performance and Intestinal Barrier Function in Arctic Charr (Salvelinus alpinus) Fed Yeast (Saccharomyces cerevisiae), Fungi (Rhizopus oryzae) and Blue Mussel (Mytilus edulis). Aquac. Nutr. 2016, 22, 1348–1360. [Google Scholar] [CrossRef]
- Weiß, M.; Buck, B.H. Partial Replacement of Fishmeal in Diets for Turbot (Scophthalmus maximus, Linnaeus, 1758) Culture Using Blue Mussel (Mytilus edulis, Linneus, 1758) Meat. J. Appl. Ichthyol. 2017, 33, 354–360. [Google Scholar] [CrossRef]
- Kikuchi, K.; Ueda, A.; Haruo, S.; Takeda, S. Effect of Dietary Inclusion of Blue Mussel Extract on Growth and Body Composition of Japanese Flounder Paralichthys olivaceus. J. World Aquac. Soc. 2002, 33, 41–47. [Google Scholar] [CrossRef]
- Mazzoni, M.; Bonaldo, A.; Gatta, P.P.; Vallorani, C.; Latorre, R.; Canova, M.; Clavenzani, P. α-Transducin and α-Gustducin Immunoreactive Cells in the Stomach of Common Sole (Solea solea) Fed with Mussel Meal. Fish Physiol. Biochem. 2015, 41, 603–612. [Google Scholar]
- Barroso, F.G.; Rodiles, A.; Vizcaino, A.J.; Martínez, T.F.; Alarcón, F.J. Evaluation of Feed Attractants in Juvenile Senegalese Sole, Solea senegalensis. J. World Aquac. Soc. 2013, 44, 682–693. [Google Scholar] [CrossRef]
- Kim, H.S.; Baek, S.I.; Lee, K.W.; Jeong, H.S.; Cho, S.H. Attractiveness of Various Protein Sources to Juvenile Rockfish (Sebastes schlegeli, Hilgendorf 1880). J. Appl. Aquac. 2020, 32, 205–220. [Google Scholar] [CrossRef]
- Tusche, K.; Berends, K.; Wuertz, S.; Susenbeth, A.; Schulz, C. Evaluation of Feed Attractants in Potato Protein Concentrate Based Diets for Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2011, 321, 54–60. [Google Scholar] [CrossRef]
- Jiang, D.; Zheng, J.; Dan, Z.; Tang, Z.; Ai, Q.; Mai, K. Effects of Five Compound Attractants in High Plant-Based Diets on Feed Intake and Growth Performance of Juvenile Turbot (Scophthalmus maximus L.). Aquac. Res. 2019, 50, 2350–2358. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, A.-L.; Xian, J.-A. Variation of Free Amino Acid and Carbohydrate Concentrations in White Shrimp, Litopenaeus vannamei: Effects of Continuous Cold Stress. Aquaculture 2011, 317, 182–186. [Google Scholar]
- Qiu, J.; Wang, W.-N.; Wang, L.; Liu, Y.-F.; Wang, A.-L. Oxidative Stress, DNA Damage and Osmolality in the Pacific White Shrimp, Litopenaeus vannamei Exposed to Acute Low Temperature Stress. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 154, 36–41. [Google Scholar] [CrossRef]
- Fan, L.; Wang, A.; Wu, Y. Comparative Proteomic Identification of the Hemocyte Response to Cold Stress in White Shrimp, Litopenaeus vannamei. J. Proteom. 2013, 80, 196–206. [Google Scholar] [CrossRef]
- Li, B.; Xian, J.-A.; Guo, H.; Wang, A.-L.; Miao, Y.-T.; Ye, J.-M.; Ye, C.-X.; Liao, S.-A. Effect of Temperature Decrease on Hemocyte Apoptosis of the White Shrimp Litopenaeus vannamei. Aquac. Int. 2014, 22, 761–774. [Google Scholar] [CrossRef]
- Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W.; Cavalli, R.O. Aquaculture in Brazil: Past, Present and Future. Aquac. Rep. 2021, 19, 100611. [Google Scholar] [CrossRef]
- Naik, A.S.; Mora, L.; Hayes, M. Characterisation of Seasonal Mytilus Edulis By-Products and Generation of Bioactive Hydrolysates. Appl. Sci. 2020, 10, 6892. [Google Scholar] [CrossRef]
- Carboni, S.; Kaur, G.; Pryce, A.; McKee, K.; Desbois, A.P.; Dick, J.R.; Galloway, S.D.R.; Hamilton, D.L. Mussel Consumption as a “Food First” Approach to Improve Omega-3 Status. Nutrients 2019, 11, 1381. [Google Scholar] [CrossRef]
- Richard, N.; Silva, T.S.; Wulff, T.; Schrama, D.; Dias, J.P.; Rodrigues, P.M.L.; Conceição, L.E.C. Nutritional Mitigation of Winter Thermal Stress in Gilthead Seabream: Associated Metabolic Pathways and Potential Indicators of Nutritional State. J. Proteom. 2016, 142, 1–14. [Google Scholar] [CrossRef]
- Abdel-Ghany, H.M.; El-Sayed, A.-F.M.; Ezzat, A.A.; Essa, M.A.; Helal, A.M. Dietary Lipid Sources Affect Cold Tolerance of Nile Tilapia (Oreochromis niloticus). J. Therm. Biol. 2019, 79, 50–55. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Fish and Shrimp; The National Academies Press: Washington, DC, USA, 2011.
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburgs, MD, USA, 2006. [Google Scholar]
- Teodósio, R.; Aragão, C.; Colen, R.; Carrilho, R.; Dias, J.; Engrola, S. A Nutritional Strategy to Promote Gilthead Seabream Performance under Low Temperatures. Aquaculture 2021, 537, 736494. [Google Scholar] [CrossRef]
- Aragão, C.; Cabano, M.; Colen, R.; Fuentes, J.; Dias, J. Alternative Formulations for Gilthead Seabream Diets: Towards a More Sustainable Production. Aquac. Nutr. 2020, 26, 444–455. [Google Scholar] [CrossRef]
- Van Wyk, P.; Scarpa, J. Water Quality Requirements and Management. In Farming Marine Shrimp in Recirculating Freshwater Systems; Van Wyk, P., Davis-Hodgkins, M., Laramore, R., Main, K.L., Mountain, J.J.S., Eds.; Florida Department of Agriculture and Consumer Services: Tallahassee, FL, USA, 1999. [Google Scholar]
- Grasshoff, K.; Ehrhardt, M.; Kremling, K. Methods of Seawater Analysis; Wiley-VCH: Weinhein, Germany, 1983. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Costa Rezende, P.; Soares, M.; Guimarães, A.M.; da Rosa Coelho, J.; Seiffert, W.Q.; Dias Schleder, D.; Vieira, F.d.N. Brown Seaweeds Added in the Diet Improved the Response to Thermal Shock and Reduced Vibrio spp. in Pacific White Shrimp Post-Larvae Reared in a Biofloc System. Aquac. Res. 2021, 52, 2852–2861. [Google Scholar] [CrossRef]
- Aragão, C.; Conceição, L.E.C.; Lacuisse, M.; Yúfera, M.; Dinis, M.T. Do Dietary Amino Acid Profiles Affect Performance of Larval Gilthead Seabream? Aquat. Living Resour. 2007, 20, 155–161. [Google Scholar] [CrossRef]
- Crane, D.P.; Ogle, D.H.; Shoup, D.E. Use and Misuse of a Common Growth Metric: Guidance for Appropriately Calculating and Reporting Specific Growth Rate. Rev. Aquac. 2020, 12, 1542–1547. [Google Scholar] [CrossRef]
- De Silva, S.S.; Soto, D. Climate Change and Aquaculture: Potential Impacts, Adaptation and Mitigation. In Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge; Cochrane, K., De Young, C., Soto, D., Bahri, T., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009; pp. 151–212. [Google Scholar]
- Ennos, R. Statistical and Data Handling Skills in Biology, 2nd ed.; Pearson Prentice Hall: Harlow, UK, 2007. [Google Scholar]
- Tacon, A.G.J.; Cody, J.J.; Conquest, L.D.; Divakaran, S.; Forster, I.P.; Decamp, O.E. Effect of Culture System on the Nutrition and Growth Performance of Pacific White Shrimp Litopenaeus vannamei (Boone) Fed Different Diets. Aquac. Nutr. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Nunes, A.J.P.; Sabry-Neto, H.; Oliveira-Neto, S.; Burri, L. Feed Preference and Growth Response of Juvenile Litopenaeus vannamei to Supplementation of Marine Chemoattractants in a Fishmeal-Challenged Diet. J. World Aquac. Soc. 2019, 50, 1048–1063. [Google Scholar] [CrossRef]
- Rana, K.J.; Siriwardena, S.; Hasan, M.R. Impact of Rising Feed Ingredient Prices on Aquafeeds and Aquaculture Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Asche, F.; Roll, K.H.; Sandvold, H.N.; Sørvig, A.; Zhang, D. Salmon Aquaculture: Larger Companies and Increased Production. Aquac. Econ. Manag. 2013, 17, 322–339. [Google Scholar] [CrossRef]
- Glencross, B.; Fracalossi, D.M.; Hua, K.; Izquierdo, M.; Mai, K.; Øverland, M.; Robb, D.; Roubach, R.; Schrama, J.; Small, B.; et al. Harvesting the Benefits of Nutritional Research to Address Global Challenges in the 21st Century. J. World Aquac. Soc. 2023, 54, 343–363. [Google Scholar] [CrossRef]
- Glencross, B.D.; Booth, M.; Allan, G.L. A Feed Is Only as Good as Its Ingredients—A Review of Ingredient Evaluation Strategies for Aquaculture Feeds. Aquac. Nutr. 2007, 13, 17–34. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing Fishmeal and Fish Oil in Industrial Aquafeeds for Carnivorous Fish. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 203–233. ISBN 978-0-08-100506-4. [Google Scholar]
- Guillaume, J.; Cruz, R.; Cuzon, G.; Wormhoudt, V.A.; Revol, A. Growth Factors in Penaeid Shrimp Feeding. In Actes de Colloques; IFREMER: Tahiti, French Polynesia, 1989; pp. 327–338. [Google Scholar]
- Derby, C.D.; Sorensen, P.W. Neural Processing, Perception, and Behavioral Responses to Natural Chemical Stimuli by Fish and Crustaceans. J. Chem. Ecol. 2008, 34, 898–914. [Google Scholar] [CrossRef]
- Soares, R.; Peixoto, S.; Davis, R.P.; Davis, D.A. Feeding Behavior and Growth of Litopenaeus vannamei Fed Soybean-Based Diets with Added Feeding Effectors. Aquaculture 2021, 536, 736487. [Google Scholar] [CrossRef]
- Albrektsen, S.; Kortet, R.; Skov, P.V.; Ytteborg, E.; Gitlesen, S.; Kleinegris, D.; Mydland, L.T.; Hansen, J.Ø.; Lock, E.J.; Mørkøre, T.; et al. Future Feed Resources in Sustainable Salmonid Production: A Review. Rev. Aquac. 2022, 14, 1790–1812. [Google Scholar] [CrossRef]
- Simon, C.J.; Jeffs, A. Feeding and Gut Evacuation of Cultured Juvenile Spiny Lobsters, Jasus edwardsii. Aquaculture 2008, 280, 211–219. [Google Scholar] [CrossRef]
- Nankervis, L.; Jones, C. Recent Advances and Future Directions in Practical Diet Formulation and Adoption in Tropical Palinurid Lobster Aquaculture. Rev. Aquac. 2022, 14, 1830–1842. [Google Scholar] [CrossRef]
- Mercier, L.; Racotta, I.S.; Yepiz-Plascencia, G.; Muhlia-Almazán, A.; Civera, R.; Quiñones-Arreola, M.F.; Wille, M.; Sorgeloos, P.; Palacios, E. Effect of Diets Containing Different Levels of Highly Unsaturated Fatty Acids on Physiological and Immune Responses in Pacific Whiteleg Shrimp Penaeus vannamei (Boone) Exposed to Handling Stress. Aquac. Res. 2009, 40, 1849–1863. [Google Scholar] [CrossRef]
- Chen, K.; Li, E.; Xu, C.; Wang, X.; Li, H.; Qin, J.G.; Chen, L. Growth and Metabolomic Responses of Pacific White Shrimp (Litopenaeus vannamei) to Different Dietary Fatty Acid Sources and Salinity Levels. Aquaculture 2019, 499, 329–340. [Google Scholar] [CrossRef]
- Schleder, D.D.; da Rosa, J.R.; Guimarães, A.M.; Ramlov, F.; Maraschin, M.; Seiffert, W.Q.; do Nascimento Vieira, F.; Hayashi, L.; Andreatta, E.R. Brown Seaweeds as Feed Additive for White-Leg Shrimp: Effects on Thermal Stress Resistance, Midgut Microbiology, and Immunology. J. Appl. Phycol. 2017, 29, 2471–2477. [Google Scholar] [CrossRef]
- Schleder, D.D.; Blank, M.; Peruch, L.G.B.; Vieira, F.d.N.; Andreatta, E.R.; Hayashi, L. Thermal Resistance of Pacific White Shrimp Fed Sargassum filipendula: A MALDI-TOF Mass Spectrometry Approach. Aquaculture 2017, 481, 103–111. [Google Scholar] [CrossRef]
- Coelho, J.d.R.; Santos, U.R.A.; Rezende, P.C.; Constanza Bolívar Ramírez, N.; Vieira, F.N. Increased Resistance to Thermal Shock in Pacific White Shrimp Fed on Green Algae and Its Effect in Conjunction with Probiotics. Int. Aquat. Res. 2023, 15, 123–134. [Google Scholar] [CrossRef]
- Rocha, J.S.; Soares, M.; Guimarães, A.M.; Schleder, D.D.; Seiffert, W.Q.; Vieira, F.N. Addition of Aurantiochytrium sp. Meal in the Diet Affects Immunity and Thermal Shock Resistance of the Pacific White Shrimp. Bol. Inst. Pesca 2021, 47, e631. [Google Scholar] [CrossRef]
- Pontinha, V.A.; Vieira, F.N.; Hayashi, L. Mortality of Pacific White Shrimp Submitted to Hypothermic and Hyposalinic Stress. Bol. Inst. Pesca 2018, 44, e310. [Google Scholar]
- Chowanski, S.; Lubawy, J.; Spochacz, M.; Ewelina, P.; Grzegorz, S.; Rosinski, G.; Slocinska, M. Cold Induced Changes in Lipid, Protein and Carbohydrate Levels in the Tropical Insect Gromphadorhina coquereliana. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 183, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Hayward, S.A.L.; Manso, B.; Cossins, A.R. Molecular Basis of Chill Resistance Adaptations in Poikilothermic Animals. J. Exp. Biol. 2014, 217, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.G.; Savage, C. Fatty Acid Composition of New Zealand Green-Lipped Mussels, Perna canaliculus: Implications for Harvesting for n-3 Extracts. Aquaculture 2006, 261, 430–439. [Google Scholar] [CrossRef]
- McLean, C.H.; Bulling, K.I.M.R. Differences in Lipid Profile of New Zealand Marine Species over Four Seasons. J. Food Lipids 2005, 12, 313–326. [Google Scholar] [CrossRef]
- González-Félix, M.L.; Gatlin, D.M.; Lawrence, A.L.; Perez-Velazquez, M. Effect of Dietary Phospholipid on Essential Fatty Acid Requirements and Tissue Lipid Composition of Litopenaeus vannamei Juveniles. Aquaculture 2002, 207, 151–167. [Google Scholar] [CrossRef]
- Araújo, B.C.; Mata-Sotres, J.A.; Viana, M.T.; Tinajero, A.; Braga, A. Fish Oil-Free Diets for Pacific White Shrimp Litopenaeus vannamei: The Effects of DHA-EPA Supplementation on Juvenile Growth Performance and Muscle Fatty Acid Profile. Aquaculture 2019, 511, 734276. [Google Scholar] [CrossRef]
Diets | |||||
---|---|---|---|---|---|
Ingredients (g kg−1) | 0% | 1% | 2% | 3% | 4% |
Mussel meal | 0.0 | 10.0 | 20.0 | 30.0 | 40.0 |
Soybean meal | 324.3 | 320.3 | 316.3 | 312.3 | 310.3 |
Fish meal | 126.0 | 125.0 | 122.0 | 119.0 | 115.0 |
Poultry meal | 150.0 | 145.0 | 142.0 | 139.0 | 135.0 |
Wheat flour | 150.0 | 150.0 | 150.0 | 150.0 | 150.0 |
Fish oil | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
Soybean oil | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Carboxymethyl cellulose | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Soy lecithin | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 |
Vitamin C a | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Vitamin premix b | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Mineral premix c | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 |
Monocalcium phosphate | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 |
Magnesium sulphate | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 |
Kaolin | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Sodium chloride | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 |
Potassium chloride | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
DL-Methionine | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Proximate composition * (% as fed) | |||||
Moisture | 8.9 | 6.8 | 9.7 | 10.8 | 8.2 |
Crude protein | 36.2 | 37.0 | 35.9 | 35.2 | 36.3 |
Crude fat | 7.2 | 7.2 | 7.8 | 7.5 | 7.9 |
Ash | 22.2 | 22.4 | 21.8 | 21.5 | 22.2 |
Gross energy (MJ kg−1) | 16.1 | 15.7 | 15.2 | 15.1 | 15.5 |
Amino Acids | Diets | ||||
---|---|---|---|---|---|
(% as Fed) | 0% | 1% | 2% | 3% | 4% |
Arginine | 2.3 | 2.4 | 2.3 | 2.2 | 2.3 |
Histidine | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Lysine | 2.1 | 2.2 | 2.1 | 2.0 | 2.1 |
Threonine | 1.4 | 1.4 | 1.4 | 1.3 | 1.4 |
Isoleucine | 1.7 | 1.8 | 1.7 | 1.6 | 1.7 |
Leucine | 2.5 | 2.6 | 2.5 | 2.4 | 2.5 |
Valine | 1.7 | 1.7 | 1.7 | 1.6 | 1.7 |
Methionine | 1.3 | 1.3 | 1.3 | 1.2 | 1.3 |
Phenylalanine | 1.8 | 1.8 | 1.8 | 1.7 | 1.8 |
Cystine | 0.9 | 1.0 | 0.9 | 0.9 | 1.0 |
Tyrosine | 1.7 | 1.9 | 1.8 | 1.6 | 1.7 |
Aspartic acid | 3.2 | 3.3 | 3.2 | 3.0 | 3.2 |
Glutamic acid | 5.4 | 5.5 | 5.4 | 5.1 | 5.4 |
Alanine | 1.7 | 1.8 | 1.7 | 1.6 | 1.7 |
Glycine | 2.2 | 2.2 | 2.2 | 2.1 | 2.1 |
Proline | 1.9 | 1.9 | 1.9 | 1.8 | 1.8 |
Serine | 1.6 | 1.7 | 1.6 | 1.6 | 1.6 |
Taurine | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 |
Diets | |||||
---|---|---|---|---|---|
Growth Indicators | 0% | 1% | 2% | 3% | 4% |
Initial weight (g) | 3.50 ± 0.01 | 3.51 ± 0.01 | 3.51 ± 0.03 | 3.50 ± 0.00 | 3.50 ± 0.01 |
Final weight (g) | 18.50 ± 0.30 b | 19.63 ± 0.18 a | 20.34 ± 0.54 a | 18.11 ± 0.31 b | 18.45 ± 0.38 b |
Weight gain (% initial weight) | 429.1 ± 9.0 b | 459.8 ± 5.0 a | 479.8 ± 18.5 a | 418.0 ± 9.2 b | 426.7 ± 10.7 b |
Weekly weight gain (g week−1) | 1.88 ± 0.04 b | 2.02 ± 0.02 a | 2.10 ± 0.07 a | 1.83 ± 0.04 b | 1.87 ± 0.05 b |
Productivity (kg m−3) | 1.74 ± 0.10 b | 1.85 ± 0.08 ab | 1.93 ± 0.05 a | 1.80 ± 0.01 ab | 1.76 ± 0.04 b |
RGR (% day−1) | 3.02 ± 0.03 b | 3.12 ± 0.02 a | 3.19 ± 0.06 a | 2.98 ± 0.03 b | 3.01 ± 0.04 b |
Survival (%) | 93.8 ± 4.1 | 94.4 ± 4.1 | 95.0 ± 3.5 | 98.8 ± 1.3 | 95.6 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claessens, S.; Aragão, C.; Hoffling, F.B.; Pinheiro, I.; Fracalossi, D.M.; Vieira, F.N. Mussel Meal as a Promotor of Growth Performance for the Whiteleg Shrimp (Litopenaeus vannamei). J. Mar. Sci. Eng. 2023, 11, 1670. https://doi.org/10.3390/jmse11091670
Claessens S, Aragão C, Hoffling FB, Pinheiro I, Fracalossi DM, Vieira FN. Mussel Meal as a Promotor of Growth Performance for the Whiteleg Shrimp (Litopenaeus vannamei). Journal of Marine Science and Engineering. 2023; 11(9):1670. https://doi.org/10.3390/jmse11091670
Chicago/Turabian StyleClaessens, Stef, Cláudia Aragão, Flávia Banderó Hoffling, Isabela Pinheiro, Débora Machado Fracalossi, and Felipe Nascimento Vieira. 2023. "Mussel Meal as a Promotor of Growth Performance for the Whiteleg Shrimp (Litopenaeus vannamei)" Journal of Marine Science and Engineering 11, no. 9: 1670. https://doi.org/10.3390/jmse11091670
APA StyleClaessens, S., Aragão, C., Hoffling, F. B., Pinheiro, I., Fracalossi, D. M., & Vieira, F. N. (2023). Mussel Meal as a Promotor of Growth Performance for the Whiteleg Shrimp (Litopenaeus vannamei). Journal of Marine Science and Engineering, 11(9), 1670. https://doi.org/10.3390/jmse11091670