Stereo Reconstruction Method for 3D Surface Wave Fields around a Floating Body Using a Marker Net in a Wave Tank
Abstract
:1. Introduction
2. Reconstruction of 3D Wave Fields around a Floating Body Model
2.1. Reconstruction of Wave Fields
2.2. Extraction of Radiation and Scattering Waves
- (i)
- The model was absent (only the incident wave was measured) ();
- (ii)
- The model was fixed ();
- (iii)
- The model was allowed to heave and pitch freely ().
3. Experimental Setup
3.1. Floating Body Model and Tank
3.2. Marker Net
3.3. Stereo Cameras
3.4. Wave Conditions
4. Results
4.1. Motion Characteristics of the Floating Body Model in Waves
4.2. Validation versus Wave Gauge Records
4.3. Stereo Reconstruction of Wave Fields
5. Discussion
5.1. Extraction of Scattering and Radiation Waves
5.2. Influence of Marker Nets on the Surrounding Wave Field
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SC | Stereo camera |
PTV | Particle tracking velocimetry |
TPS | Thin plate spline |
QTM | Qualisys tracking manager |
WG | Wave gauge |
RAO | Response amplitude operator |
RMSD | Root mean square deviation |
Appendix A. Sources of Error in Stereo Camera Measurements
References
- Inui, T. From bulbous bow to free-surface shock wave—Trends of 20 years’ research on ship waves at the Tokyo University Tank. J. Ship Res. 1981, 25, 147–180. [Google Scholar] [CrossRef]
- Maruo, H. Wave resistance of a ship in regular head seas. Bull. Fac. Eng. Yokohama Natl. Univ. 1960, 9, 73–91. [Google Scholar]
- Ohkusu, M. Analysis of Waves Generated by a Ship Oscillating and Running on a Calm Water with Forward Velocity. J. Soc. Nav. Archit. Jpn. 1977, 1977, 36–44. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, M. Hydrodynamic study on added resistance using unsteady wave analysis. J. Ship Res. 2013, 57, 220–240. [Google Scholar]
- Sakurada, A.; Tsujimoto, M.; Yokota, S. Application of energy saving bow shape in actual seas to JBC. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, Virtual, 21–30 June 2021; Volume 85161, p. V006T06A017. [Google Scholar]
- Maruo, H. The drift of a body floating on waves. J. Ship Res. 1960, 4, 1–10. [Google Scholar]
- Newman, J.N. The drift force and moment on ships in waves. J. Ship Res. 1967, 11, 51–60. [Google Scholar] [CrossRef]
- The Specialist Committee on Detailed Flow Measurements. Final Report and Recommendations to the 26th ITTC. In Proceedings of the 26th International Towing Tank Conference, Rio de Janeiro, Brazil, 28 August–3 September 2011; Volume II, pp. 575–625.
- Maeda, K.; Hosotani, N.; Tamura, K.; Ando, H. Wave making properties of circular basin. In Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No. 04EX869), IEEE, Taipei, Taiwan, 20–23 April 2004; pp. 349–354. [Google Scholar]
- Gyongy, I.; Richon, J.B.; Bruce, T.; Bryden, I. Validation of a hydrodynamic model for a curved, multi-paddle wave tank. Appl. Ocean. Res. 2014, 44, 39–52. [Google Scholar] [CrossRef]
- Ota, D.; Houtani, H.; Sawada, H.; Taguchi, H. Optimization of segmented wave-maker control to generate spatially uniform regular waves in a rounded-rectangular wave basin. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, Virtual, 21–30 June 2021; Volume 85161, p. V006T06A064. [Google Scholar]
- Wanek, J.M.; Wu, C.H. Automated trinocular stereo imaging system for three-dimensional surface wave measurements. Ocean Eng. 2006, 33, 723–747. [Google Scholar] [CrossRef]
- Benetazzo, A. Measurements of short water waves using stereo matched image sequences. Coast. Eng. 2006, 53, 1013–1032. [Google Scholar] [CrossRef]
- Benetazzo, A.; Fedele, F.; Gallego, G.; Shih, P.C.; Yezzi, A. Offshore stereo measurements of gravity waves. Coast. Eng. 2012, 64, 127–138. [Google Scholar] [CrossRef]
- Bergamasco, F.; Torsello, A.; Sclavo, M.; Barbariol, F.; Benetazzo, A. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves. Comput. Geosci. 2017, 107, 28–36. [Google Scholar] [CrossRef]
- Lavieri, R.S.; Tannuri, E.A.; de Mello, P.C. Image-based measurement system for regular waves in an offshore basin. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–17. [Google Scholar] [CrossRef]
- Takahei, T.; Inui, T. The Wave-Cancelling Effects of Waveless Bulb on the High Speed Passenger Coaster M/S “KURENAI MARU” Part III-Photogrammetrical Observations of Ship Waves. J. Zosen Kiokai 1961, 1961, 105–118. (In Japanese) [Google Scholar] [CrossRef]
- Chatellier, L.; Jarny, S.; Gibouin, F.; David, L. A parametric PIV/DIC method for the measurement of free surface flows. Exp. Fluids 2013, 54, 1–15. [Google Scholar] [CrossRef]
- Gomit, G.; Rousseaux, G.; Chatellier, L.; Calluaud, D.; David, L. Spectral analysis of ship waves in deep water from accurate measurements of the free surface elevation by optical methods. Phys. Fluids 2014, 26, 122101. [Google Scholar] [CrossRef]
- Cang, Y.; He, H.; Qiao, Y. Measuring the wave height based on binocular cameras. Sensors 2019, 19, 1338. [Google Scholar] [CrossRef]
- Gomit, G.; Chatellier, L.; Calluaud, D.; David, L.; Fréchou, D.; Boucheron, R.; Perelman, O.; Hubert, C. Large-scale free surface measurement for the analysis of ship waves in a towing tank. Exp. Fluids 2015, 56, 1–13. [Google Scholar] [CrossRef]
- Tulin, M.P.; Landrini, M. Breaking waves in the ocean and around ships. In Proceedings of the Twenty-Third Symposium on Naval Hydrodynamics Office of Naval Research Bassin d’Essais des Carenes National Research Council, Val de Reuil, France, 17–22 September 2001. [Google Scholar]
- Hoyer, K.; Tulin, M.P. A stereo video imaging system for surface particle tracking. In Proceedings of the International Symposium on PIV and Modelling Water Wave Phenomena, Cambridge, UK, 17–19 April 2002. [Google Scholar]
- Waseda, T.; Sinchi, M.; Kiyomatsu, K.; Nishida, T.; Takahashi, S.; Asaumi, S.; Kawai, Y.; Tamura, H.; Miyazawa, Y. Deep water observations of extreme waves with moored and free GPS buoys. Ocean Dyn. 2014, 64, 1269–1280. [Google Scholar] [CrossRef]
- Fujarra, A.; Gonçalves, R.; Fonseca, R.; Siewert, K.; Martins, J. Optical motion capture as a techinique for measuring the water wave elevation. In Proceedings of the 4th International Workshop pn Applied Offshore Hydrodynamics (IWAOH), Rio de Janeiro, Brazil, 2–4 December 2009. [Google Scholar]
- Bispo, I.; Amouzadrad, P.; Mohapatra, S.; Soares, C.G. Motion analysis of a floating horizontal set of interconnected plates based on computer vision target tracking technique. In Advances in the Analysis and Design of Marine Structures; CRC Press: Boca Raton, FL, USA, 2023; pp. 153–159. [Google Scholar]
- Houtani, H.; Waseda, T.; Tanizawa, K. Measurement of spatial wave profiles and particle velocities on a wave surface by stereo imaging–validation with unidirectional regular waves. J. Jpn. Soc. Nav. Archit. Ocean Eng. 2017, 25, 93–102. (In Japanese) [Google Scholar]
- Mozumi, K.; Waseda, T.; Chabchoub, A. 3D stereo imaging of abnormal waves in a wave basin. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, St. John’s, NL, Canada, 31 May–5 June 2015; Volume 56499, p. V003T02A027. [Google Scholar]
- Houtani, H.; Waseda, T.; Tanizawa, K.; Sawada, H. Temporal variation of modulated-wave-train geometries and their influence on vertical bending moments of a container ship. Appl. Ocean Res. 2019, 86, 128–140. [Google Scholar] [CrossRef]
- Houtani, H.; Sawada, H.; Waseda, T. Phase convergence and crest enhancement of modulated wave trains. Fluids 2022, 7, 275. [Google Scholar] [CrossRef]
- Chabchoub, A.; Mozumi, K.; Hoffmann, N.; Babanin, A.V.; Toffoli, A.; Steer, J.N.; van den Bremer, T.S.; Akhmediev, N.; Onorato, M.; Waseda, T. Directional soliton and breather beams. Proc. Natl. Acad. Sci. USA 2019, 116, 9759–9763. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hirabayashi, S.; Tabeta, S.; Imai, M.; Yamashita, Y. Experiment study of aircushion-type platform with simplified models and the measurement of inner wave fields. In Proceedings of the Conference Proceedings the Japan Society of Naval Architects and Ocean Engineers 35 The Japan Society of Naval Architects and Ocean Engineers, Hyogo, Japan, 17–18 November 2022; pp. 531–534. [Google Scholar]
- The MathWorks, Inc. Tpaps, Thin-Plate Smoothing Spline. Available online: https://www.mathworks.com/help/curvefit/tpaps.html (accessed on 6 July 2023).
- Xu, B.; Guyenne, P. Nonlinear simulation of wave group attenuation due to scattering in broken floe fields. Ocean Model. 2023, 181, 102139. [Google Scholar] [CrossRef]
- Suzuki, H.; Sakai, Y.; Yoshimura, Y.; Houtani, H.; Carmo, L.H.; Yoshimoto, H.; Kamizawa, K.; Gonçalves, R.T. Non-linear motion characteristics of a shallow draft cylindrical barge type floater for a FOWT in waves. J. Mar. Sci. Eng. 2021, 9, 56. [Google Scholar] [CrossRef]
- Katafuchi, M.; Suzuki, H.; Higuchi, Y.; Houtani, H.; Malta, E.B.; Gonçalves, R.T. Wave Response of a Monocolumn Platform with a Skirt Using CFD and Experimental Approaches. J. Mar. Sci. Eng. 2022, 10, 1276. [Google Scholar] [CrossRef]
- Qualisys, A.B. QTM Qualisys Track Manager User Manual; Qualisys AB: Göteborg, Sweden, 2011. [Google Scholar]
- The MathWorks, Inc. meanEffectSize, One-Sample or Two-Sample Effect Size Computations. Available online: https://www.mathworks.com/help/stats/meaneffectsize.html (accessed on 15 July 2023).
Wave Component | Extraction Method |
---|---|
incident wave | |
scattering wave | |
radiation wave | |
disturbance wave |
Characteristic | Value |
---|---|
displacement | 73.6 kg |
draft | 224 mm |
height of center of gravity (KG) | 90.6 mm |
metacentric height (GM) | 156 mm |
pitch radius of gyration | 222 mm |
Wave Period T | Wave Height H |
---|---|
1.0 s | 19.5 mm, 39.0 mm |
1.5 s | 19.5 mm, 39.0 mm, 78.0 mm |
2.0 s | 19.5 mm, 39.0 mm, 78.0 mm |
Wave Parameters (T [s], H [mm]) | ||||||
---|---|---|---|---|---|---|
(1.0, 19.5) | (1.5, 19.5) | (2.0, 19.5) | (1.5, 78.0) | (2.0, 78.0) | ||
w/MN | ||||||
w/o MN | ||||||
(mm) | diff | |||||
d | ||||||
w/MN | ||||||
w/o MN | ||||||
(mm) | diff | |||||
d | ||||||
w/MN | ||||||
w/o MN | ||||||
(deg.) | diff | |||||
d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuchi, Y.; Houtani, H.; Gonçalves, R.T.; Yoshimura, Y.; Hirabayashi, S.; Suzuki, H.; Orihara, H. Stereo Reconstruction Method for 3D Surface Wave Fields around a Floating Body Using a Marker Net in a Wave Tank. J. Mar. Sci. Eng. 2023, 11, 1683. https://doi.org/10.3390/jmse11091683
Higuchi Y, Houtani H, Gonçalves RT, Yoshimura Y, Hirabayashi S, Suzuki H, Orihara H. Stereo Reconstruction Method for 3D Surface Wave Fields around a Floating Body Using a Marker Net in a Wave Tank. Journal of Marine Science and Engineering. 2023; 11(9):1683. https://doi.org/10.3390/jmse11091683
Chicago/Turabian StyleHiguchi, Yuya, Hidetaka Houtani, Rodolfo T. Gonçalves, Yasuo Yoshimura, Shinichiro Hirabayashi, Hideyuki Suzuki, and Hideo Orihara. 2023. "Stereo Reconstruction Method for 3D Surface Wave Fields around a Floating Body Using a Marker Net in a Wave Tank" Journal of Marine Science and Engineering 11, no. 9: 1683. https://doi.org/10.3390/jmse11091683
APA StyleHiguchi, Y., Houtani, H., Gonçalves, R. T., Yoshimura, Y., Hirabayashi, S., Suzuki, H., & Orihara, H. (2023). Stereo Reconstruction Method for 3D Surface Wave Fields around a Floating Body Using a Marker Net in a Wave Tank. Journal of Marine Science and Engineering, 11(9), 1683. https://doi.org/10.3390/jmse11091683