A Study on the Transport of 137Cs and 90Sr in Marine Biota in a Hypothetical Scenario of a Nuclear Accident in the Western Mediterranean Sea
Abstract
:1. Introduction
2. The Model
3. Results
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BUM | Biological Uptake Model |
FAO | Food and Agriculture Organization of the United Nations |
NPP | Nuclear Power Plant |
WW | Wet Weight |
References
- Prandle, D. A modelling study of the mixing of 137 Cs in the seas of the European Continental Shelf. Philos. Trans. R. Soc. Lond. Ser. 1984, A310, 407–436. [Google Scholar]
- Breton, M.; Salomon, J.C. A 2d long-term advection–dispersion model for the Channel and southern North-Sea. A: Validation through comparison with artificial radionuclides. J. Mar. Syst. 1995, 6, 495–513. [Google Scholar] [CrossRef]
- Harms, I.; Karcher, M.J.; Dethleff, D. Modelling Siberian river runoff – implications for contaminant transport in the Arctic Ocean. J. Mar. Syst. 2000, 27, 95–115. [Google Scholar] [CrossRef]
- Sánchez–Cabeza, J.A.; Ortega, M.; Merino, J.; Masqué, P. Long-term box modelling of 137Cs in the Mediterranean Sea. J. Mar. Syst. 2002, 33, 457–472. [Google Scholar] [CrossRef]
- Kawamura, H.; Kobayashi, T.; Furuno, A.; In, T.; Ishikawa, Y.; Nakayama, T.; Shima, S.; Awaji, T. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. J. Nucl. Sci. Technol. 2011, 48, 1349–1356. [Google Scholar] [CrossRef]
- Behrens, E.; Schwarzkopf, F.U.; Lubbecke, J.; Boning, C.W. Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima. Environ. Res. Lett. 2012, 7, 034000. [Google Scholar] [CrossRef]
- Tsumune, D.; Tsubono, T.; Aoyama, M.; Hirose, K. Distribution of oceanic 137Cs from the Fukushima Daiichi nuclear power plant simulated numerically by a regional ocean model. J. Environ. Radioact. 2012, 111, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Dvorzhak, A.; Puras, C.; Montero, M.; Mora, J.C. Spanish experience on modeling of environmental radioactive contamination due to Fukushima Daiichi NPP accident using JRODOS. Environ. Sci. Technol. 2012, 46, 11887–11895. [Google Scholar] [CrossRef]
- Masumoto, Y.; Miyazawa, Y.; Tsumune, D.; Kobayashi, T.; Estournel, C.; Marsaleix, P.; Lanerolle, L.; Mehra, A.; Garraffo, Z.D. Oceanic dispersion simulation of Cesium-137 from Fukushima Dai-ichi nuclear power plant. Elements 2012, 8, 207–212. [Google Scholar] [CrossRef]
- Periáñez, R. Models for predicting the transport of radionuclides in the Red Sea. J. Environ. Radioact. 2020, 223–224, 106396. [Google Scholar] [CrossRef]
- Periáñez, R. APERTRACK: A particle-tracking model to simulate radionuclide transport in the Arabian/Persian Gulf. Progr. Nucl. Energ. 2021, 142, 103998. [Google Scholar] [CrossRef]
- Periáñez, R. A Lagrangian tool for simulating the transport of chemical pollutants in the Arabian/Persian Gulf. Modelling 2021, 2, 675–685. [Google Scholar] [CrossRef]
- Maderich, V.; Bezhenar, R.; Kovalets, I.; Khalchenkov, O.; Brovchenko, I. Long–Term Contamination of the Arabian Gulf as a Result of Hypothetical Nuclear Power Plant Accidents. J. Mar. Sci. Eng. 2023, 11, 331. [Google Scholar] [CrossRef]
- Periáñez, R.; Min, B.-I.; Suh, K.-S. The transport, effective half-lives and age distributions of radioactive releases in the northern Indian Ocean. Mar. Pollut. Bull. 2021, 169, 112587. [Google Scholar] [CrossRef] [PubMed]
- Tsabaris, C.; Tsiaras, K.; Eleftheriou, G.; Triantafyllou, G. 137Cs ocean distribution and fate at East Mediterranean Sea in case of a nuclear accident in Akkuyu Nuclear Power Plant. Progr. Nucl. Energ. 2021, 139, 103879. [Google Scholar] [CrossRef]
- Tsabaris, C.; Eleftheriou, G.; Tsiaras, K.; Triantafyllou, G. Distribution of dissolved 137Cs, 131I and 238Pu at eastern Mediterranean Sea in case of hypothetical accident at the Akkuyu nuclear power plant. J. Environ. Radioact. 2022, 251–252, 106964. [Google Scholar] [CrossRef] [PubMed]
- Periáñez, R.; Cortés, C. A Numerical model to simulate the transport of radionuclides in the Western Mediterranean after a nuclear accident. J. Mar. Sci. Eng. 2023, 11, 169. [Google Scholar] [CrossRef]
- Periáñez, R.; Bezhenar, I.; Brovchenko, C.; Duffa, M.; Iosjpe, K.T.; Jung, T.; Kobayashi, F.; Lamego, V.; Maderich, B.I.; Min, H.; et al. Modelling of marine radionuclide dispersion in IAEA MODARIA program: Lessons learnt from the Baltic Sea and Fukushima scenarios. Sci. Total Environ. 2016, 569–570, 594–602. [Google Scholar] [CrossRef]
- IAEA. Modelling of Marine Dispersion and Transfer of Radionuclides Accidentally Released from Land Based Facilities; IAEA–TECDOC–1876; IAEA: Vienna, Austria, 2019. [Google Scholar]
- Periáñez, R.; Bezhenar, R.; Brovchenko, I.; Duffa, C.; Iosjpe, M.; Jung, K.T.; Kobayashi, T.; Liptak, L.; Little, A.; Maderich, V.; et al. Marine radionuclide transport modelling: Recent developments, problems and challenges. Environ. Modell. Softw. 2019, 122, 104523. [Google Scholar] [CrossRef]
- Schonfeld, W. Numerical simulation of the dispersion of artificial radionuclides in the English Channel and the North Sea. J. Mar. Syst. 1995, 6, 529–544. [Google Scholar] [CrossRef]
- Nakano, H.; Motoi, T.; Hirose, K.; Aoyama, M. Analysis of 137Cs concentration in the Pacific using a Lagrangian approach. J. Geophys. Res. 2010, 115, C06015. [Google Scholar]
- Periáñez, R.; Bezhenar, R.; Brovchenko, I.; Jung, K.T.; Kamidara, Y.; Kim, K.O.; Kobayashi, T.; Liptak, L.; Maderich, V.; Min, B.I.; et al. Fukushima 137Cs releases dispersion modelling over the Pacific Ocean. Comparisons of models with water, sediment and biota data. J. Environ. Radioact. 2019, 198, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Bezhenar, R.; Heling, R.; Ievdin, I.; Iosjpe, M.; Maderich, V.; Willemsen, S.; de With, G.; Dvorzhak, A. Integration of marine food chain model POSEIDON in JRODOS and testing versus Fukushima data. Radioprotection 2016, 51, S137–S139. [Google Scholar] [CrossRef]
- Periáñez, R.; Qiao, F.; Zhao, C.; de With, G.; Jung, K.-T.; Sangmanee, C.; Wang, G.; Xia, C.; Zhang, M. Opening Fukushima floodgates: Modelling 137Cs impact in marine biota. Mar. Pollut. Bull. 2021, 170, 112645. [Google Scholar] [CrossRef] [PubMed]
- Bezhenar, R.; Jung, K.T.; Maderich, V.; Willemsen, S.; de With, G.; Qiao, F. Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post–Fukushima and post–Chernobyl periods. Biogeosciences 2016, 13, 3021–3034. [Google Scholar] [CrossRef]
- Bezhenar, R.; Kim, K.O.; Maderich, V.; de With, G.; Jung, K.T. Multi–compartment kinetic–allometric (MCKA) model of radionuclide bioaccumulation in marine fish. Biogeosciences 2021, 18, 2591–2607. [Google Scholar] [CrossRef]
- Maderich, V.; Bezhenar, R.; Heling, R.; de With, G.; Jung, K.T.; Myoung, J.G.; Cho, Y.K.; Qiao, F.; Robertson, L. Regional long–term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: Application to the Fukushima Dai–ichi accident. J. Environ. Radioact. 2014, 131, 4–18. [Google Scholar] [CrossRef]
- Maderich, V.; Jung, K.T.; Bezhenar, R.; de With, G.; Qiao, F.; Casacuberta, N.; Masque, P.; Kim, Y.H. Dispersion and fate of 90Sr in the Northwestern Pacific and adjacent seas: Global fallout and the Fukushima Dai–ichi accident. Sci. Total Environ. 2014, 494–495, 261–271. [Google Scholar] [CrossRef]
- Maderich, V.; Bezhenar, R.; Tateda, Y.; Aoyama, M.; Tsumune, D.; Jung, K.T.; de With, G. The POSEIDON–R compartment model for the prediction of transport and fate of radionuclides in the marine environment. MethodsX 2018, 5, 1251–1266. [Google Scholar] [CrossRef]
- De With, G.; Bezhenar, R.; Maderich, V.; Yevdin, Y.; Iosjpe, M.; Jung, K.T.; Qiao, F.; Periáñez, R. Development of a dynamic food chain model for assessment of the radiological impact from radioactive releases to the aquatic environment. J. Environ. Radioact. 2021, 233, 106615. [Google Scholar] [CrossRef]
- Bleck, R. An oceanic general circulation model framed in hybrid isopycnic–Cartesian coordinates. Ocean Model. 2001, 4, 55–88. [Google Scholar] [CrossRef]
- Xu, X.; Chassignet, E.P.; Price, J.F.; Özgökmen, T.M.; Peters, H. A regional modeling study of the entraining Mediterranean outflow. J. Geophys. Res. 2007, 112, C12005. [Google Scholar] [CrossRef]
- Kara, A.B.; Wallcraft, A.J.; Martin, P.J.; Pauley, R.L. Optimizing surface winds using QuikSCAT measurements in the Mediterranean Sea during 2000–2006. J. Mar. Syst. 2009, 78, S119–S131. [Google Scholar] [CrossRef]
- IAEA. Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment; Technical Reports Series 422; IAEA: Vienna, Austria, 2004. [Google Scholar]
- Nyffeler, U.P.; Li, Y.H.; Santschi, P.H. A kinetic approach to describe trace element distribution between particles and solution in natural aquatic systems. Geochim. Cosmochim. Acta 1984, 48, 1513–1522. [Google Scholar] [CrossRef]
- Periáñez, R.; Brovchenko, I.; Duffa, C.; Jung, K.T.; Kobayashi, T.; Lamego, F.; Maderich, V.; Min, B.I.; Nies, H.; Osvath, I.; et al. A new comparison of marine dispersion model performances for Fukushima Dai–ichi releases in the frame of IAEA MODARIA program. J. Environ. Radioact. 2015, 150, 247–269. [Google Scholar] [CrossRef]
- Periáñez, R.; Suh, K.S.; Min, B.I.; Villa, M. The behaviour of 236U in the North Atlantic Ocean assessed from numerical modelling: A new evaluation of the input function into the Arctic. Sci. Total Environ. 2018, 626, 255–263. [Google Scholar] [CrossRef]
- Periáñez, R.; Suh, K.S.; Min, B.I. The behaviour of 137Cs in the North Atlantic Ocean assessed from numerical modelling: Releases from nuclear fuel reprocessing factories, redissolution from contaminated sediments and leakage from dumped nuclear wastes. Mar. Pollut. Bull. 2016, 113, 343–361. [Google Scholar] [CrossRef]
- Periáñez, R.; Bezhenar, R.; Iosjpe, M.; Maderich, V.; Nies, H.; Osvath, I. Outola, I.; de With G. A comparison of marine radionuclide dispersion models for the Baltic Sea in the frame of IAEA MODARIA program. J. Environ. Radioact. 2015, 139, 66–77. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nagai, H.; Chino, M.; Kawamura, H. Source term estimation of atmospheric release due to the Fukushima Dai–ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol. 2013, 50, 255–264. [Google Scholar] [CrossRef]
- Christoudias, T.; Lelieveld, J. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai–ichi nuclear accident. Atmos. Chem. Phys. 2013, 13, 1425–1438. [Google Scholar] [CrossRef]
- IAEA MARIS. Marine Radioactivity Information System; Division of IAEA Environment Laboratories: Monaco, 2023; Available online: https://maris.iaea.org (accessed on 30 April 2023).
- Uddin, S.; Fowler, S.W.; Behbehani, M.; Al–Ghadban, A.N.; Swarzenski, P.W.; Al–Awadhi, N. A review of radioactivity in the Gulf region. Mar. Pollut. Bull. 2020, 159, 111481. [Google Scholar] [CrossRef] [PubMed]
- Vives i Batlle, J.; Beresford, N.; Beaugelin–Seiller, K.; Bezhenar, R.; Brown, J.; Cheng, J.-J.; Cujic, M.; Dragovic, S.; Duffa, C.; Fievet, B.; et al. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario. J. Environ. Radioact. 2016, 153, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Periáñez, R. Viewpoint on the Integration of Geochemical Processes into Tracer Transport Models for the Marine Environment. Geosciences 2022, 12, 152. [Google Scholar] [CrossRef]
- Periáñez, R.; Suh, K.S.; Min, B.I.; Casacuberta, N.; Masqué, P. Numerical modelling of the releases of 90Sr from Fukushima to the ocean: An evaluation of the source term. Environ. Sci. Technol. 2013, 47, 12305–12313. [Google Scholar] [CrossRef]
- Sartandel, S.J.; Jha, S.K.; Tripathi, R.M. Latitudinal variation and residence time of 137Cs in Indian coastal environment. Mar. Pollut. Bull. 2015, 100, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Zinger, I.; Oughton, D.H.; Jones, S.R. Stakeholder interaction within the ERICA Integrated Approach. J. Environ. Radioact. 2008, 99, 1503–1509. [Google Scholar] [CrossRef]
Sr (Target Tissue: Bone) | Cs (Target Tissue: Flesh) | |
---|---|---|
Organ fraction f | 0.12 | 0.80 |
prey (days) | 128 | 75 |
predator (days) | 257 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periáñez, R.; Cortés, C. A Study on the Transport of 137Cs and 90Sr in Marine Biota in a Hypothetical Scenario of a Nuclear Accident in the Western Mediterranean Sea. J. Mar. Sci. Eng. 2023, 11, 1707. https://doi.org/10.3390/jmse11091707
Periáñez R, Cortés C. A Study on the Transport of 137Cs and 90Sr in Marine Biota in a Hypothetical Scenario of a Nuclear Accident in the Western Mediterranean Sea. Journal of Marine Science and Engineering. 2023; 11(9):1707. https://doi.org/10.3390/jmse11091707
Chicago/Turabian StylePeriáñez, Raúl, and Carmen Cortés. 2023. "A Study on the Transport of 137Cs and 90Sr in Marine Biota in a Hypothetical Scenario of a Nuclear Accident in the Western Mediterranean Sea" Journal of Marine Science and Engineering 11, no. 9: 1707. https://doi.org/10.3390/jmse11091707
APA StylePeriáñez, R., & Cortés, C. (2023). A Study on the Transport of 137Cs and 90Sr in Marine Biota in a Hypothetical Scenario of a Nuclear Accident in the Western Mediterranean Sea. Journal of Marine Science and Engineering, 11(9), 1707. https://doi.org/10.3390/jmse11091707