Characteristics of Early Neoproterozoic Stromatolites from Southern Liaoning, North China: Insights into the Formation of Stromatolites
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Macrostructure
4.2. Microstructure
4.3. Substrate
5. Discussion
5.1. Formation of the Ganjingzi Stromatolites
5.2. Comparison with Modern Stromatolites
6. Conclusions
- (1)
- A tripartite lamina structure consisting of light laminae and two types of dark laminae is developed in the Ganjingzi stromatolites. Preservation of the spotted clots and peloids indicates that the genesis of dark laminae is linked to microbes, while the light laminae is the result of synsedimentary marine cement filling. Recrystallization occurred during diagenesis, leading to the enlargement of particles within the light laminae.
- (2)
- The microbial mats in the study area colonize the topographic relief of both hardground and carbonate fragments, which influence the morphological diversity of the Ganjingzi stromatolites. The hardground substrate is suitable for the growth of columnar and stratiform stromatolites, while the hard fragments are mainly colonized by stratiform forms. The substrate is a key factor affecting the growth of stromatolites in the northeastern margin of the North China Craton during the Neoproterozoic.
- (3)
- The environment, morphology, microfabrics, and laminae of the Ganjingzi stromatolite are comparable to those in the Hamelin Pool and Lagoa Vermelha, probably showing that the modern carbonate stromatolites are analogs for the Ganjingzi stromatolites. A similar genesis mechanism, biomineralization, and microbial metabolism of the modern stromatolites may be present in the stromatolites from the study area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riding, R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology 2000, 47, 179–214. [Google Scholar] [CrossRef]
- Awramik, S.M.; Sprinkle, J. Proterozoic stromatolites: The first marine evolutionary biota. Hist. Biol. 1999, 13, 241–253. [Google Scholar] [CrossRef]
- Cao, R.J.; Yuan, X.L. Stromatolites; University of Science and Technology of China Press: Hefei, China, 2006; pp. 1–383. [Google Scholar]
- Bosak, T.; Knoll, A.H.; Petroff, A.P. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 2013, 41, 21–44. [Google Scholar] [CrossRef]
- Suosaari, E.P.; Reid, R.P.; Playford, P.E.; Foster, J.S.; Stolz, J.F.; Casaburi, G.; Hagan, P.D.; Chirayath, V.; Macintyre, I.G.; Planavsky, N.J.; et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 2016, 6, 20557. [Google Scholar] [CrossRef] [PubMed]
- Grotzinger, J.P.; Knoll, A.H. STROMATOLITES in PRECAMBRIAN CARBONATES: Evolutionary Mileposts or Environmental Dipsticks? Annu. Rev. Earth Planet. Sci. 1999, 27, 313–358. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Lai, G.M.; Gong, E.P.; Wilson, M.A.; Huang, W.T.; Guan, C.Q.; Yuan, D.C. Early Neoproterozoic well-preserved stromatolites from southern Liaoning, North China: Characteristics and paleogeographic implications. Palaeoworld 2023, 32, 1–13. [Google Scholar] [CrossRef]
- Allen, M.A.; Goh, F.; Burns, B.P.; Neilan, B.A. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 2009, 7, 82–96. [Google Scholar] [CrossRef]
- Jahnert, R.J.; Collins, L.B. Significance of subtidal microbial deposits in Shark Bay, Australia. Mar. Geol. 2011, 286, 106–111. [Google Scholar] [CrossRef]
- Planavsky, N.; Grey, K. Stromatolite branching in the Neoproterozoic of the Centralian Superbasin, Australia: An investigation into sedimentary and microbial control of stromatolite morphology. Geobiology 2008, 6, 33–45. [Google Scholar] [CrossRef]
- Suosaari, E.P.; Reid, R.P.; Oehlert, A.M.; Playford, P.E.; Steffensen, C.K.; Andres, M.S.; Suosaari, G.V.; Milano, G.R.; Eberli, G.P. Stromatolite provinces of hamelin pool: Physiographic controls on stromatolites and associated lithofacies. J. Sediment. Res. 2019, 89, 207–226. [Google Scholar] [CrossRef]
- Vasconcelos, C.; Warthmann, R.; Mckenzie, J.A.; Visscher, P.T.; Bittermann, A.G.; Lith, Y. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics? Sediment. Geol. 2006, 185, 175–183. [Google Scholar] [CrossRef]
- Lepot, K.; Benzerara, K.; Brown, G.E.; Philippot, P. Microbially influenced formation of 2,724-million-year-old stromatolites. Nat. Geosci. 2008, 1, 118–121. [Google Scholar] [CrossRef]
- Hickman-Lewis, K.; Cavalazzi, B.; Giannoukos, K.; D’Amico, L.; Vrbaski, S.; Saccomano, G.; Dreossi, D.; Tromba, G.; Foucher, F.; Brownscombe, W.; et al. Advanced two-and three-dimensional insights into Earth’s oldest stromatolites (ca. 3.5 Ga): Prospects for the search for life on Mars. Geology 2022, 51, 33–38. [Google Scholar] [CrossRef]
- Riding, R. The Nature of Stromatolites: 3500 Million Years of History and a Century of Research. In Advances in Stromatolite Geobiology; Reitner, J., Quéric, N., Arp, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–74. [Google Scholar] [CrossRef]
- Riding, R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment. Geol. 2006, 185, 229–238. [Google Scholar] [CrossRef]
- Wu, Y.S.; Jiang, H.X.; Li, Y.; Yu, G.L. Microfabric features of microbial carbonates: Experimental and natural evidence of mold holes and crusts. J. Palaegeogr. 2021, 10, 19. [Google Scholar] [CrossRef]
- Kuang, H.W.; Fan, Z.X.; Liu, Y.Q.; Peng, N.; Zhu, Z.C.; Yang, Z.R.; Wang, Z.X.; Yu, H.L.; Zhong, Q. Stromatolite characteristics of Mesoproterozoic Shennongjia Group in the northern margin of Yangtze Block, China. China Geol. 2019, 2, 364–381. [Google Scholar] [CrossRef]
- Reid, R.P.; Foster, J.S.; Radtke, G.; Golubic, S. Modern marine stromatolites of little darby island, exuma archipelago, bahamas: Environmental setting, accretion mechanisms and role of euendoliths. In Advances in Stromatolite Geobiology; Reitner, J., Quéric, N., Arp, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 77–89. [Google Scholar] [CrossRef]
- Andersen, D.T.; Sumner, D.Y.; Hawes, I.; Webster-Brown, J.; Mckay, C.P. Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 2011, 9, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Bosak, T.; Bush, J.W.M.; Flynn, M.R.; Liang, B.; Ono, S.; Petroff, A.P.; Sim, M.S. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology 2010, 8, 45–55. [Google Scholar] [CrossRef]
- Bosak, T.; Liang, B.; Sim, M.S.; Petroff, A.P. Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 2009, 106, 10939–10943. [Google Scholar] [CrossRef]
- Petroff, A.P.; Sim, M.S.; Maslov, A.; Krupenin, M.; Rothman, D.H.; Bosak, T. Biophysical basis for the geometry of conical stromatolites. Proc. Natl. Acad. Sci. USA 2010, 107, 9956–9961. [Google Scholar] [CrossRef]
- Delfino, D.O.; Wanderley, M.D.; Silva e Silva, L.H.; Feder, F.; Lopes, F.A.S. Sedimentology and temporal distribution of microbial mats from Brejo do Espinho, Rio de Janeiro, Brazil. Sediment. Geol. 2012, 263–264, 85–95. [Google Scholar] [CrossRef]
- Awramik, S.M.; Riding, R. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc. Natl. Acad. Sci. USA 1988, 85, 1327–1329. [Google Scholar] [CrossRef] [PubMed]
- Burns, B.P.; Anitori, R.; Butterworth, P.; Henneberger, R.; Goh, F.; Allen, M.A.; Ibañez-Peral, R.; Bergquist, P.L.; Walter, M.R.; Neilan, B.A. Modern analogues and the early history of microbial life. Precambrian Res. 2009, 173, 10–18. [Google Scholar] [CrossRef]
- Dravis, J.J. Hardened subtidal stromatolites, Bahamas. Science 1983, 219, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.W. Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. J. Geol. 1961, 69, 517–533. [Google Scholar] [CrossRef]
- Reid, R.P.; James, N.P.; Macintyre, I.G.; Dupraz, C.P.; Burne, R.V. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies 2003, 49, 299–324. [Google Scholar] [CrossRef]
- Playford, P.E.; Cockbain, A.E. Modern Algal Stromatolites at Hamelin Pool, a Hypersaline Barred Basin in Shark Bay, Western Australia. In Developments in Sedimentology; Walter, M.R., Ed.; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1976; Volume 20, pp. 389–411. [Google Scholar] [CrossRef]
- Reid, R.P.; Visscher, P.T.; Decho, A.W.; Stolz, J.F.; Bebout, B.M.; Dupraz, C.; Macintyre, I.G.; Paerl, H.W.; Pinckney, J.L.; Prufert-Bebout, L.; et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 2000, 406, 989–992. [Google Scholar] [CrossRef]
- Riding, R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Sci. Rev. 2002, 58, 163–231. [Google Scholar] [CrossRef]
- Mei, M.X.; Meng, Q.F. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. J. Palaegeogr. 2016, 18, 127–146. (In Chinese) [Google Scholar]
- Hua, H.; Cao, R.J. Neoproterozoic stromatolite assemblages from the Shisanlitai Stage and its significance in the regional and continental correlation. J. Stratigr. 2003, 27, 19–25. (In Chinese) [Google Scholar]
- Bureau of Geology and Mineral Resources of Liaoning Province. Regional Geology of Liaoning Province; Geological Publishing House: Beijing, China, 1989; p. 856. (In Chinese) [Google Scholar]
- Pang, K.; Tang, Q.; Wan, B.; Li, G.J.; Chen, L.; Yuan, X.L.; Zhou, C.M. Integrated Meso-Neoproterozoic stratigraphy in the Jiao-LiaoXu-Huai area of North China Craton: A review. J. Stratigr. 2021, 45, 467–492. (In Chinese) [Google Scholar]
- Zhang, S.; Zhao, Y.; Ye, H.; Hu, G. Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China Craton. Precambrian Res. 2016, 272, 203–225. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, P.; Feng, L.; Gong, Z.; Mitchell, R.N.; Li, Y. Oldest-known Neoproterozoic carbon isotope excursion: Earlier onset of Neoproterozoic carbon cycle volatility. Gondwana Res. 2021, 94, 1–11. [Google Scholar] [CrossRef]
- Rishworth, G.M.; van Elden, S.; Perissinotto, R.; Miranda, N.A.F.; Steyn, P.; Bornman, T.G. Environmental influences on living marine stromatolites: Insights from benthic microalgal communities. Environ. Microbiol. 2016, 18, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Li, C.; Liu, D.; Foster, I.; Tripati, A.; Lloyd, M.K.; Maradiaga, I.; Luo, G.M.; An, Z.H.; She, Z.B.; et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proc. Natl. Acad. Sci. USA 2020, 117, 14005. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.W.; Liu, Y.Q.; Peng, N.; Vandyk, T.M.; Le Heron, D.P.; Zhu, Z.C.; Bai, H.Q.; Wang, Y.C.; Wang, Z.X.; Zhong, Q.; et al. Ediacaran cap dolomite of Shennongjia, northern Yangtze Craton, South China. Precambrian Res. 2022, 368, 106483. [Google Scholar] [CrossRef]
- Gregg, J.M.; Bish, D.L.; Kaczmarek, S.E.; Machel, H.G. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology 2015, 62, 1749–1769. [Google Scholar] [CrossRef]
- Compton, J.; Harris, C.; Thompson, S. Pleistocene dolomite from the namibian shelf: High 87Sr/86Sr and δ18O values indicate an evaporative, Mixed-Water origin. J. Sediment. Res. 2001, 71, 800–808. [Google Scholar] [CrossRef]
- Hofbauer, B.; Viehmann, S.; Gier, S.; Bernasconi, S.M.; Meister, P. Microfacies and C/O-isotopes in lacustrine dolomites reflect variable environmental conditions in the Germanic Basin (Arnstadt Formation, Upper Triassic). Austrian J. Earth Sci. 2021, 114, 66–87. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z. Diagenetic modification of dolomite in middle Ordovician carbonates, Taiyuan City area, China. Sediment. Geol. 1998, 116, 143–156. [Google Scholar] [CrossRef]
- Roberts, J.A.; Bennett, P.C.; González, L.A.; Macpherson, G.L.; Milliken, K.L. Microbial precipitation of dolomite in methanogenic groundwater. Geology 2004, 32, 277–280. [Google Scholar] [CrossRef]
- Flügel, E. Microfacies data: Matrix and grains. In Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 2nd ed.; Flügel, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–176. [Google Scholar] [CrossRef]
- Wilson, M.A. Ecological dynamics on pebbles, cobbles, and boulders. Palaios 1987, 2, 594–599. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, E.; Wilson, M.A.; Guan, C.; Sun, B.; Chang, H. Paleoecology of a Pennsylvanian encrusting colonial rugose coral in south Guizhou, China. Paleogeogr. Paleoclimatol. Paleoecol. 2009, 280, 507–516. [Google Scholar] [CrossRef]
- Keim, C.N.; Dos Santos, H.N.; Santiago, C.S.; Pennafirme, S.; Neumann, R.; Schnellrath, J.; Lima, I.; Crapez, M.A.C.; Farina, M. Microstructure and mineral composition of Holocene stromatolites from Lagoa Vermelha, a hypersaline lagoon in Brazil: Insights into laminae genesis. J. Sediment. Res. 2020, 90, 887–905. [Google Scholar] [CrossRef]
- Spadafora, A.; Perri, E.; Mckenzie, J.A.; Vasconcelos, C. Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology 2010, 57, 27–40. [Google Scholar] [CrossRef]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Hoffman, P. Stromatolite Morphogenesis in Shark Bay, Western Australia. In Developments in Sedimentology; Walter, M.R., Ed.; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1976; Volume 20, pp. 261–271. [Google Scholar] [CrossRef]
- Edgcomb, V.P.; Bernhard, J.M.; Summons, R.E.; Orsi, W.; Beaudoin, D.; Visscher, P.T. Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia. ISME J. 2014, 8, 418–429. [Google Scholar] [CrossRef]
- Carvalho, C.; Oliveira, M.I.N.; Macario, K.; Guimarães, R.B.; Keim, C.N.; Sabadini-Santos, E.; Crapez, M.A.C. Stromatolite growth in Lagoa Vermelha, southeastern coast of Brazil: Evidence of environmental changes. Radiocarbon 2018, 60, 383–393. [Google Scholar] [CrossRef]
- Areias, C.; Barbosa, C.F.; Cruz, A.P.S.; Mckenzie, J.A.; Ariztegui, D.; Eglinton, T.; Haghipour, N.; Vasconcelos, C.; Sánchez-Román, M. Organic matter diagenesis and precipitation of Mg-rich carbonate and dolomite in modern hypersaline lagoons linked to climate changes. Geochim. Cosmochim. Acta 2022, 337, 14–32. [Google Scholar] [CrossRef]
- Warthmann, R.; Vasconcelos, C.; Bittermann, A.G.; Mckenzie, J.A. The role of purple sulphur bacteria in carbonate precipitation of modern and possibly early Precambrian stromatolites. In Advances in Stromatolite Geobiology; Reitner, J., Quéric, N., Arp, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 141–149. [Google Scholar] [CrossRef]
Types | Sub-Types | Columnar Description | Relief (cm) |
---|---|---|---|
Unbranched | I | Consistent width during accretion and narrows at the top | 10–20 |
II | Width increases to maximum and then decreases | <20 | |
III | Width gradually increases during accretion | 20–30 | |
IV | Width remains the same in general | 8–15 | |
Branched | V | Parallel or minutely divergent branching | 10–30 |
VI | Markedly divergent branching | 3–20 | |
VII | Double branching | <70 |
Stromatolite | Environment | Morphology | Microfabrics | Laminae Constituted |
---|---|---|---|---|
Ganjingzi (this study) | Tidal-flat setting with evaporation | Stratiform, dome, and columnar with fenestrae structure | Spotted clots and peloids aggregate | The tripartite lamina structure composed of two types of dark laminae and the light laminae |
Hamelin Pool | Tidal-flat with hypersaline, high evaporation, low precipitation, and restricted seawater cycling | Stratiform, dome, ridged, and columnar with fenestrae structure | Two types of microbial micrite, red-brown micrite and gray peloidal micrite | Three types of microbial mats are pustular, smooth, colloform mats respectively. |
Lagoa Vermelha | High evaporative and hypersaline conditions in the restricted lagoon | Stratiform and dome | Peloids and micritic lumps | The green, brown, and red layers of the microbial mats, together with the white layers of carbonate precipitation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lai, G.; Gong, E.; Yuan, D.; Wilson, M.A.; Li, Y. Characteristics of Early Neoproterozoic Stromatolites from Southern Liaoning, North China: Insights into the Formation of Stromatolites. J. Mar. Sci. Eng. 2023, 11, 1709. https://doi.org/10.3390/jmse11091709
Zhang Y, Lai G, Gong E, Yuan D, Wilson MA, Li Y. Characteristics of Early Neoproterozoic Stromatolites from Southern Liaoning, North China: Insights into the Formation of Stromatolites. Journal of Marine Science and Engineering. 2023; 11(9):1709. https://doi.org/10.3390/jmse11091709
Chicago/Turabian StyleZhang, Yongli, Guanming Lai, Enpu Gong, Dingcheng Yuan, Mark A. Wilson, and Yu Li. 2023. "Characteristics of Early Neoproterozoic Stromatolites from Southern Liaoning, North China: Insights into the Formation of Stromatolites" Journal of Marine Science and Engineering 11, no. 9: 1709. https://doi.org/10.3390/jmse11091709
APA StyleZhang, Y., Lai, G., Gong, E., Yuan, D., Wilson, M. A., & Li, Y. (2023). Characteristics of Early Neoproterozoic Stromatolites from Southern Liaoning, North China: Insights into the Formation of Stromatolites. Journal of Marine Science and Engineering, 11(9), 1709. https://doi.org/10.3390/jmse11091709